×

Numerical scruitinization of unsteady 3D flow of Jeffrey nanofluid with MHD in a porous medium. (English) Zbl 1499.76108

Summary: The main idea of this article is to examine the exact solutions of the unsteady 3D flow of Jeffrey nanofluid with Magnetohydrodynamic in a porous medium. The nonlinear partial differential equations have been modified to ordinary differential equations though traveling wave parameter \(\xi = a_1 x + b_1 y + c_1 z + Ut\). In this inspect, a collection of accurate solutions to unsteady 3D flow with MHD in porous medium are acquired. The results display that velocity component and other parameters take a polynomial function or exponential form when traveling wave solution is accepted and analyzed in such liquid stream frameworks. In special cases, the solution of MHD Newtonian fluid with porous can be gotten by putting \(\beta\) and \(\beta_1 \to 0\) and further the solutions of MHD Jeffery nanofluid with and without porous medium can be achieved by setting \(M \to 0\) in the general solution. The result of significant parameters on the liquid motion is examined as well as contrast among distinct Jeffrey nanofluids is inspected via 2D and 3D graphical analysis in the end.

MSC:

76S05 Flows in porous media; filtration; seepage
76W05 Magnetohydrodynamics and electrohydrodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahmad, K.; Ishak, A., Mhd flow and heat transfer of a Jeffrey fluid over a stretching sheet with viscous dissipation, Malays. J. Math. Sci., 10, 311-323 (2016)
[2] Hayat, T.; Iqbal, Z.; Mustafa, M.; Alsaedi, A., Unsteady flow and heat transfer of Jeffrey fluid over a stretching sheet, Therm. Sci, 18, 1069-1078 (2014) · doi:10.2298/TSCI110907092H
[3] Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles, ASME MD 231 FED 66, 99-105 (1995).
[4] Nadeem, S.; Haq, RU; Khan, ZH, Numerical solution of non-Newtonian nanofluid flow over a stretching sheet, Appl Nanosci., 4, 625-631 (2014) · doi:10.1007/s13204-013-0235-8
[5] Ali, S.; Hayat, T.; Alsaedi, A.; Ali, M., Nonlinear thermal radiation in three-dimensional flow of Jeffery nanofluid: A model for solar energy, Appl. Math. Comput., 248, 273-286 (2014) · Zbl 1338.76006
[6] Abbasi, FM; Shehzad, SA; Hayat, T.; Alhuthali, MS, Mixed convection flow of Jeffrey nanofluid with thermal radiation and double stratification, J. Hydrodyn., 28, 840-849 (2016) · doi:10.1016/S1001-6058(16)60686-8
[7] Khalid, A.; Khan, I.; Khan, A.; Shafie, S., Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium, Int. J. Eng. Sci. Technol., 18, 309-317 (2015) · Zbl 1356.35179
[8] Mahmood, K.; Noveel, M.; Muhammad, S.; Nasir, S., Heat transfer in stagnation-point flow of a Jeffery fluid past a lubricated surface, J. Braz. Soc. Mech. Sci. Eng., 41, 1-9 (2019) · doi:10.1007/s40430-018-1560-3
[9] Dalir, N., Numerical study of entropy generation for forced convection flow and heat transfer of a Jeffrey fluid over a stretching sheet, Alex. Eng. J., 53, 769-778 (2014) · doi:10.1016/j.aej.2014.08.005
[10] Khalid, A.; Khan, I.; Khan, A.; Shafie, S., Exact solutions for free convection flow of nanofluids with ramped wall temperature, Eur. Phys. J. Plus., 130, 1-14 (2015) · Zbl 1356.35179 · doi:10.1140/epjp/i2015-15057-9
[11] Turkyilmazoglu, M.; Pop, I., Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching / shrinking sheet in a Jeffrey fluid, Int. J. Heat Mass Transf., 57, 82-88 (2014) · doi:10.1016/j.ijheatmasstransfer.2012.10.006
[12] Khan, I., A note on exact solutions for the unsteady free convection flow of a Jeffrey fluid, Z. Naturforsch, 70, 397-401 (2015) · doi:10.1515/zna-2015-0010
[13] Ahmed, J.; Shahzad, A.; Khan, M.; Ali, R., A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet, AIP Adv., 5, 117117 (2015) · doi:10.1063/1.4935571
[14] Ellahi, R.; Bhatti, MM; Riaz, A.; Sheikholeslami, M., Effects of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium, J. Porous Media, 17, 143-157 (2014) · doi:10.1615/JPorMedia.v17.i2.50
[15] Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A., A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption, PLoS ONE, 12, e0172518 (2017) · doi:10.1371/journal.pone.0172518
[16] Shahzad, F.; Sagheer, M.; Hussain, S., Numerical simulation of magnetohydrodynamic Jeffrey nanofluid flow and heat transfer over a stretching sheet considering Joule heating and viscous dissipation, AIP Adv., 8, 1-16 (2018) · doi:10.1063/1.5031447
[17] Hussain, T.; Shehzad, SA; Hayat, T.; Alsaedi, A.; Al-solamy, F.; Ramzan, M., Radiative hydromagnetic flow of Jeffrey nanofluid by an exponentially stretching sheet, PLoS ONE, 9, 1-9 (2014)
[18] Naramgari, S.; Chalavadi, S.; Isaac, A., Stagnation-point flow of a Jeffrey nanofluid over a stretching surface with induced magnetic field and chemical reaction, Int. J. Eng. Res. Africa, 20, 93-111 (2016)
[19] Rasool, G.; Khan, MK; Bilal, SM; Khan, I., MHD squeezed darcy-forchheimer nanofluid flow between two h-distance apart horizontal plates, Open Phys., 18, 1100-1107 (2020) · doi:10.1515/phys-2020-0191
[20] Zin, NAM; Khan, I.; Shafie, S., The impact silver nanoparticles on MHD free convection flow of Jeffrey fluid over an oscillating vertical plate embedded in a porous medium, J. Mol. Liq., 222, 138-150 (2016) · doi:10.1016/j.molliq.2016.06.098
[21] Shafiq, A.; Khan, I.; Rasool, G.; Seikh, AH; Sherif, EM, Significance of double stratification in stagnation point flow of third-grade fluid towards a radiative stretching cylinder, Mathematics, 7, 1-17 (2019)
[22] Shehzad, SA; Hayat, T.; Alsaedi, A., MHD flow of Jeffrey nanofluid with convective boundary conditions, J. Braz. Soc. Mech. Sci. Eng., 37, 873-883 (2015) · doi:10.1007/s40430-014-0222-3
[23] Rasool, G.; Zhang, T.; Shafiq, A.; Hulya, D., Influence of chemical reaction on marangoni convective flow of nanoliquid in the presence of lorentz forces and thermal radiation: a numerical investigation, J. Adv. Nanotechnol., 1, 32-49 (2019) · doi:10.14302/issn.2689-2855.jan-19-2598
[24] Shafiq, A.; Zari, I.; Rasool, G.; Tlili, I.; Khan, TS, On the MHD casson axisymmetric marangoni forced convective flow of nanofluids, Mathematics, 7, 1-15 (2019)
[25] Ali, F.; Gohar, M.; Khan, I., MHD flow of water-based Brinkman type nanofluid over a vertical plate embedded in a porous medium with variable surface velocity, temperature and concentration, J. Mol. Liq., 223, 412-419 (2016) · doi:10.1016/j.molliq.2016.08.068
[26] Ali, F.; Sheikh, NA; Khan, I.; Saqib, M., Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model, J. Magn. Magn. Mater., 423, 327-336 (2016) · doi:10.1016/j.jmmm.2016.09.125
[27] Ali, B.; Rasool, G.; Hussain, S.; Baleanu, D.; Bano, S., Finite element study of magnetohydro-dynamics (MHD) and activation energy in darcy-forchheimer rotating flow of casson carreau nanofluid, Processes, 8, 1-18 (2020)
[28] Zokri, SM; Arifin, NS; Salleh, MZ; Kasim, ARM; Mohammad, NF; Yusoff, WNSW, MHD Jeffrey nanofluid past a stretching sheet with viscous dissipation effect, J. Phys. Conf. Ser., 890, 1-6 (2017) · doi:10.1088/1742-6596/890/1/012002
[29] Bhatti, MM; Abbas, MA, Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium, Alexandria Eng. J., 55, 1017-1023 (2016) · doi:10.1016/j.aej.2016.03.002
[30] Ahmad, K.; Ishak, A., Magnetohydrodynamic (MHD) Jeffrey fluid over a stretching vertical surface in a porous medium, Propuls. Power Res., 6, 269-276 (2017) · doi:10.1016/j.jppr.2017.11.007
[31] Aleem, M.; Asjad, MI; Ahmadian, A.; Salimi, M.; Ferrara, M., Heat transfer analysis of channel flow of MHD Jeffrey fluid subject to generalized boundary conditions, Eur. Phys. J. Plus, 123, 1-15 (2020)
[32] Qasim, M., Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source / sink”, Alexandria Eng. J., 52, 571-575 (2013) · doi:10.1016/j.aej.2013.08.004
[33] Maleki, H.; Safaei, MR; Alrashed, AAAA; Kasaeian, A., Flow and heat transfer in non-Newtonian nanofluids over porous surfaces, J. Therm. Anal. Calorim., 9, 1-12 (2018)
[34] Sheikholeslami, M.; Arabkoohsar, A.; Khan, I.; Shafee, A.; Li, Z., Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus, J. Clean. Prod., 221, 885-898 (2019) · doi:10.1016/j.jclepro.2019.02.075
[35] Sheikh, NA; Ali, F.; Saqib, M.; Khan, I.; Jan, SAA; Alshomrani, AS; Alghamdi, MS, Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Cassonfluidmodel with heat generation and chemical reaction, Results phys., 7, 789-800 (2017) · doi:10.1016/j.rinp.2017.01.025
[36] Sheikh, NA; Ali, F.; Saqib, M.; Khan, I.; Jan, SAA, A comparative study of Atangana-Baleanu andCaputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, Eur. Phys. J. Plus, 132, 1-14 (2017) · doi:10.1140/epjp/i2017-11280-8
[37] Hussanan, A.; Ismail, Z.; Khan, I.; Hussein, AG; Shafie, S., Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating, Eur. Phys. J. Plus, 129, 46 (2014) · doi:10.1140/epjp/i2014-14046-x
[38] Shah, NA; Khan, I., Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives, Eur. Phys. J. Plus, 76, 1-11 (2016) · doi:10.1140/epjc/s10052-015-3826-6
[39] Hussanan, A.; Salleh, MZ; Khan, I.; Shafie, S., Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene and engine oil, J. Mol. Liq., 229, 482-488 (2016) · doi:10.1016/j.molliq.2016.12.040
[40] Ali, F.; Saqib, M.; Khan, I.; Sheikh, NA, Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters’-B fluid model, Eur. Phys. J. Plus., 131, 1-10 (2016) · doi:10.1140/epjp/i2016-16001-3
[41] Agrawal, M.; Jog, CS, Aquadratic time finite element method for nonlinear elastodynamics within the context of hybrid finite elements, Appl. Math. Comput., 305, 203-220 (2017) · Zbl 1411.74051
[42] Ravi, L.; Saha Ray, S.; Sahoo, S., New exact solutions of coupled Boussinesq-Burgers equations by exp-function method, J. Ocean Eng. Sci., 2, 34-46 (2017) · doi:10.1016/j.joes.2016.09.001
[43] Turkyilmazoglu, M., A note on the homotopy analysis method, Appl. Math. Lett., 23, 1226-1230 (2010) · Zbl 1195.65104 · doi:10.1016/j.aml.2010.06.003
[44] Sarif, NM; Sallesh, MZ; Nazar, R., Numerical solution of flow and heat transfer over a stretching sheet with Newtonian heating using the Keller-box method, Proc. Eng., 53, 542-554 (2013) · doi:10.1016/j.proeng.2013.02.070
[45] Jena, S.; Mishra, SR; Dash, GC, Chemical reaction effect on MHD Jeffery fluid flow over a stretching sheet through porous media with heat generation / absorption, Int. J. Appl. Comput. Math. (2016) · Zbl 1397.76167 · doi:10.1007/s40819-016-0173-8
[46] Zhao, Y.; Chen, L.; Zhang, XR, Traveling wave solutions to incompressible unsteady 2-D laminar flows with heat transfer boundary, Int. Commun. Heat Mass Transf., 75, 206-217 (2016) · doi:10.1016/j.icheatmasstransfer.2015.05.006
[47] Jamil, M.; Ahmed, A., Traveling wave solution solutions of 3D fractionalized MHD Newtonian fluid in porous medium with heat transfer, J. Appl. Comput. Mech., 6, 968-984 (2020) · doi:10.2205/JACM.2019.30053.1673
[48] Jamil, M.; Ahmed, A.; Khan, NA, Some exact traveling wave solutions of MHD Maxwell fluid in porous medium, Int. J. Appl. Comput. Math., 6, 1-18 (2020) · Zbl 1435.76005 · doi:10.1007/s40819-020-00815-4
[49] Jamil, M.; Ahmed, A., New traveling wave solutions of MHD micropolar fluid in porous medium, J. Egypt. Math. Soc., 28, 1-22 (2020) · Zbl 1434.76148 · doi:10.1186/s42787-020-00085-5
[50] Ahmed, A.; Poonam, KK; Khalil, M.; Riaz, F.; Mohsnain, SM, New exact traveling wave solutions for fractional order system describing the second grade fluid through medium with heat transfer, J. Appl. Comput. Mech., 7, 764-781 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.