×

A simplified lumped parameter model for pneumatic tubes. (English) Zbl 1491.76062

Summary: Tubes are commonly used in pneumatic systems for transferring energy and control signals. Using the control volume method, a mathematical tube model has been developed, which takes into account the effect of resistance, capacitance and inertance on the dynamic properties of control and supply circuits of pneumatic systems. The adequacy of the computer model developed in Matlab/Simulink was verified by comparing the results of simulation studies with the results of experimental tests of airflow through tubes of varying diameter and length. The advantage of the computer model is the capability to model pneumatic systems under varying conditions of heat exchange with the environment by changing the coefficient of the polytropic process coefficient.

MSC:

76N15 Gas dynamics (general theory)
76M99 Basic methods in fluid mechanics
76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
76-05 Experimental work for problems pertaining to fluid mechanics

Software:

Matlab; Simulink
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] I.G. Currie, Fundamental Mechanics of Fluids, Fourth ed., CRC Press Taylor & Francis Group, Boca Raton, London, New York, 2013. [Google Scholar] · Zbl 1067.76001
[2] R. Goodson and R. Leonard, A survey of modeling techniques for fluid line transients. Transactions of the ASME, J. Basic Eng. 94 (2) (1972), pp. 474-482. doi:10.1115/1.3425453[Crossref], [Google Scholar]
[3] M. Soumelidis, D. Johnston, K. Edge, and D. Tilley, A Comparative Study of Modelling Techniques for Laminar Flow Transients in Hydraulic Pipelines, Proceedings of the 6th JFPS International Symposium on Fluid Power, Tsukuba, November 7-10, 2005, pp. 100-105). [Google Scholar]
[4] C. Bisgaard, H. Sørensen, and S. Spangenberg, A finite element method for transient compressible flow in pipelines, Int. J. Numer. Methods Fluids 7 (3) (1987), pp. 291-303. doi:10.1002/(ISSN)1097-0363[Crossref], [Web of Science ®], [Google Scholar]
[5] Y. Chen, F. Gao, Z. Zhang, H. Wang, and G. Cai, Finite volume model for quasi one-dimensional compressible transient pipe flow, (I) Finite volume model of flow field, Journal of Aerospace Power 23 (2) (2008), pp. 311-316. [Google Scholar]
[6] J. Manning, Computerized method of characteristics calculations for unsteady pneumatic line flows, Transactions ASME, Journal Basic Engineering, Ser. D 90 (2) (1968), pp. 231-240. doi:10.1115/1.3605084[Crossref], [Google Scholar]
[7] P. Krus, K. Weddefelt, and J.O. Palmberg, Fast pipeline models for simulation of hydraulic systems, Transaction of ASME, Journal of Dynamics Systems, Measurement and Control 116 (3) (1994), pp. 132-136. doi:10.1115/1.2900667[Crossref], [Web of Science ®], [Google Scholar]
[8] W. Franco and M. Sorli, Time‐domain models for pneumatic transmission lines, Bath Workshop on Power Transmission and Motion Control, PTMC (2004), pp. 257-269. [Google Scholar]
[9] A. Almondo and M. Sorli, Time Domain Fluid Transmission Line Modelling using a Passivity Preserving Rational Approximation of the Frequency Dependent Transfer Matrix, Int. J. Fluid Power 7 (1) (2006), pp. 41-50. doi:10.1080/14399776.2006.10781238[Taylor & Francis Online], [Google Scholar]
[10] C. Hsue and D. Hullender, Modal approximations for the fluid dynamics of hydraulic and pneumatic transmission lines, in Proceedings of ASME Winter Annual Meeting on Fluid Transmission Line Dynamics, M.E. Franke and T.M. Drzewiecki, Eds., ASME, New York, 1983, pp. 51-77. [Google Scholar]
[11] J. Makinen, R. Piche, and A. Ellman, Fluid transmission line modeling using a variational method, Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control 122 (1) (2000), pp. 153-162. doi:10.1115/1.482449[Crossref], [Web of Science ®], [Google Scholar]
[12] S.V. Kirchel and O. Sawodny, Dynamic modeling of pneumatic transmission lines in Matlab/Simulink, Proceedings of the International Fluid Power and Mechatronics Conference, Beijing/China, August 17-20^th (2011), pp. 24-29. [Google Scholar]
[13] J.E. Funk and T.R. Robe, Transients in pneumatic transmission lines subjected to large pressure changes, Int. J. Mechanical Sci. 12 (3) (1970), pp. 245-257. doi:10.1016/0020-7403(70)90042-1[Crossref], [Web of Science ®], [Google Scholar]
[14] Modeling of Pneumatic Systems. Tutorial for the Pneumatics Library. Dassault Systèmes AB IDEON Science Park SE-223 70 LUND, (2010). http://marketing.intrinsys.co.uk/V6_2013x_PDir/pdf/catia_dbm_pneumatics_library.pdf(23.08.2016). [Google Scholar]
[15] M. Reeßing, U. Döring, and T. Brix, Modeling of heterogeneous systems in early design phases, in: F.-L. Krause. (Eds.), The future of product development. Proceedings of the 17th CIRP Design Conference, Springer, Berlin Heidelberg, 2007, pp. 247-258, [Google Scholar]
[16] Y. Shi, S. Ren, M. Cai, W. Xu, and Q. Deng, Pressure dynamic characteristics of pressure controlled ventilation system of a lung simulator, Comput Math Methods Med. 2014 (2014), pp. 1-10. article ID 76712. doi:10.1155/2014/761712[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1423.92117
[17] J. Čižmár, Simulation of dynamic qualities of the aircraft pitot-static system, Mechanics Transport Communications. issue 1, article No 0063 (2006), pp. 1-10. http://mtc-aj.com/library/63_EN.pdf[Google Scholar]
[18] Z. Kamiński, Mathematical Modeling of Pneumatic Pipes in a Simulation of Heterogeneous Engineering Systems. ASME, J. Fluids Eng.. 133, 12 (2011), pp. 121401-121407. doi:10.1115/1.4005261[Crossref], [Web of Science ®], [Google Scholar]
[19] Z. Kamiński, Simulation and Experimental Testing of the Pneumatic Brake Systems of Agricultural Vehicles, Oficyna Wydawnicza Politechniki Białostockiej, Białystok, 2012. [Google Scholar]
[20] Z. Kamiński, Determination of flow coefficient of pneumatic pipelines, Pneumatyka, 68. 3 (2008), pp. 33-36. [Google Scholar]
[21] P.K. Nag, Basic and Applied Thermodynamics 2/E, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2010. [Google Scholar]
[22] Catalog 2014. Mebra plastic Italia s.p.a. http://www.mebraplastik.com/images/layout/download/Catalogo.pdf(23.08.2016)[Google Scholar]
[23] I.E. Idelchik, Handbook of Hydraulic Resistance, 4th ed., edition revised and augmented, CRC Begell House, New York, CT, 2007. [Google Scholar]
[24] SMC (China) Co., Ltd., Modern Practical Pneumatic Technology, China Machine Press, Beijing, 2008.(Chinese) [Google Scholar]
[25] J. Guo and P.Y. Julien, Modified log-wake law for turbulent flow in smooth pipes, J. Hydraulic Res. 41 (5) (2003), pp. 493-501. doi:10.1080/00221680309499994[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[26] Pipe Flow Calculation. Specific gravity, gas mixture density, specific volume, pressure levels. http://www.pipeflowcalculations.com/pipe-valve-fitting-flow/density-viscosity-specific-volume.php(23.08.2016)[Google Scholar]
[27] R.K. Shah and D.P. Sekulic, Fundamentals of Heat Exchanger Design, John Wiley & Sons, Inc, Hoboken, New Jersey, 2003. [Crossref], [Google Scholar]
[28] E.S. Menon, Gas Pipeline Hydraulics, CRC Press Taylor & Francis Group, Boca Raton, 2005. [Crossref], [Google Scholar]
[29] W.C. Young, R.G. Budynas, and A.M. Sadegh, Roark’s Formulas for Stress and Strain, 8th ed., The McGraw-Hill Companies, Inc, New York, 2012. [Google Scholar]
[30] Simulink. Developing S-Functions. The MathWorks, Inc, Natick, 2015. http://www.mathworks.com/help/pdf_doc/simulink/sfunctions.pdf(23.08.2016)[Google Scholar]
[31] J. Zurada, A. Levitan, and J.A. Guan, Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context, J. Real Estate Res. 33 (3) (2011), pp. 349-387. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.