×

A mixed elasticity formulation for fluid-poroelastic structure interaction. (English) Zbl 1492.76110

Summary: We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers-Joseph-Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters.

MSC:

76S05 Flows in porous media; filtration; seepage
76D07 Stokes and related (Oseen, etc.) flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
35M33 Initial-boundary value problems for mixed-type systems of PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

UMFPACK; FreeFem++
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ambartsumyan, I., Khattatov, E., Yotov, I., & Zunino, P. 2015, in Simulation of flow in fractured poroelastic media: a comparison of different discretization approaches. Finite Difference Methods, Theory and Applications, (SciCham: Springer), Lecture Notes in Comput., 9045, 3-14 · Zbl 1426.76212
[2] I. Ambartsumyan, E. Khattatov, I. Yotov and P. Zunino, A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer. Math., 140, (2018) 513-553 · Zbl 1406.76081
[3] I. Ambartsumyan, V.J. Ervin, T. Nguyen and I. Yotov, A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media. ESAIM: M2AN, 53, (2019) 1915-1955 · Zbl 1431.76120 · doi:10.1051/m2an/2019061
[4] I. Ambartsumyan, E. Khattatov, T. Nguyen and I. Yotov, Flow and transport in fractured poroelastic media. GEM Int. J. Geomath., 10, (2019) 1-34 · Zbl 1419.76602 · doi:10.1007/s13137-019-0118-6
[5] I. Ambartsumyan, E. Khattatov, J.M. Nordbotten and I. Yotov, A multipoint stress mixed finite element method for elasticity on simplicial grids. SIAM J. Numer. Anal., 58, (2020) 630-656 · Zbl 1451.65181 · doi:10.1137/18M1229183
[6] I. Ambartsumyan, E. Khattatov and I. Yotov, A coupled multipoint stress-multipoint flux mixed finite element method for the Biot system of poroelasticity. Comput. Methods Appl. Mech. Eng., 372, (2020) 113407 · Zbl 1506.74385 · doi:10.1016/j.cma.2020.113407
[7] I. Ambartsumyan, E. Khattatov, J.M. Nordbotten and I. Yotov, A multipoint stress mixed finite element method for elasticity on quadrilateral grids. Numer. Methods Part. Differ. Equ., 37, (2021) 1886-1915 · Zbl 1451.65181 · doi:10.1002/num.22624
[8] D. Arnold and J. Lee, Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal., 52, (2014) 2743-2769 · Zbl 1309.74033 · doi:10.1137/13095032X
[9] D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp., 76, (2007) 1699-1723 · Zbl 1118.74046
[10] D.N. Arnold, G. Awanou and W. Qiu, Mixed finite elements for elasticity on quadrilateral meshes. Adv. Comput. Math., 41, (2015) 553-572 · Zbl 1320.74096
[11] S. Badia, A. Quaini and A. Quarteroni, Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys., 228, (2009) 7986-8014 · Zbl 1391.74234
[12] Y. Bazilevs, K. Takizawa and T.E. Tezduyar, Computational Fluid-Structure Interaction: Methods and Applications. John Wiley& Sons (2013) · Zbl 1286.74001 · doi:10.1002/9781118483565
[13] G.S. Beavers and D.D. Joseph, Boundary conditions at a naturally impermeable wall. J. Fluid. Mech, 30, (1967) 197-207 · doi:10.1017/S0022112067001375
[14] E.A. Bergkamp, C.V. Verhoosel, J.J.C. Remmers and D.M.J. Smeulders, A staggered finite element procedure for the coupled Stokes-Biot system with fluid entry resistance. Comput. Geosci., 24, (2020) 1497-1522 · Zbl 1439.65107 · doi:10.1007/s10596-019-09931-7
[15] M. Biot, General theory of three-dimensional consolidation. J. Appl. Phys., 12, (1941) 155-164 · JFM 67.0837.01
[16] Boffi, D., Brezzi, F., Demkowicz, L. F., Durán, R. G., & Falk, R. S. 2008, in Mixed Finite Elements, Compatibility Conditions, and Applications, (Berlin; Fondazione C.I.M.E., Florence: Springer-Verlag), Lecture Notes in Mathematics, 1939 · Zbl 1138.65001 · doi:10.1007/978-3-540-78319-0
[17] Brezzi, F. 1991, in Mixed and Hybrid Finite Element Methods, (New York: Springer-Verlag), Springer Series in Computational Mathematics, 15 · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[18] Bukač, M., Yotov, I., Zakerzadeh, R., & Zunino, P. in Effects of poroelasticity on fluid-structure interaction in arteries: a computational sensitivity study. In: Modeling the Heart and the Circulatory System, (Cham: Springer), MS&A. Model. Simul. Appl., 14, 197-220
[19] M. Bukač, I. Yotov, R. Zakerzadeh and P. Zunino, Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng., 292, (2015) 138-170 · Zbl 1423.76419 · doi:10.1016/j.cma.2014.10.047
[20] M. Bukač, I. Yotov and P. Zunino, An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Part. Differ. Equ., 31, (2015) 1054-1100 · Zbl 1329.74270 · doi:10.1002/num.21936
[21] M. Bukač, I. Yotov and P. Zunino, Dimensional model reduction for flow through fractures in poroelastic media. ESAIM: M2AN, 51, (2017) 1429-1471 · Zbl 1372.76100
[22] H. -J. Bungartz, & M. Schäfer, Fluid-structure Interaction: Modelling, Simulation, Optimisation. Vol. 53. Springer Science& Business Media (2006). · Zbl 1097.76002 · doi:10.1007/3-540-34596-5
[23] S. Cesmelioglu, Analysis of the coupled Navier-Stokes/Biot problem. J. Math. Anal. Appl., 456, (2017) 970-991 · Zbl 1402.35216 · doi:10.1016/j.jmaa.2017.07.037
[24] A. Cesmelioglu and P. Chidyagwai, Numerical analysis of the coupling of free fluid with a poroelastic material. Numer. Methods Part. Differ. Equ., 36, (2020) 463-494 · Zbl 07771400 · doi:10.1002/num.22437
[25] Cesmelioglu, A., Lee, H., Quaini, A., Wang, K., & Yi, S. Y. 2016, in Optimization-based decoupling algorithms for a fluid-poroelastic system. In: Topics in Numerical Partial Differential Equations and Scientific Computing., (New York: Springer), IMA Vol. Math. Appl., 160, 79-98 · Zbl 1386.76100
[26] P. Ciarlet, The Finite Element Method for Elliptic Problems, 4. Amsterdam-New York-Oxford: Studies in Mathematics and its Applications. North-Holland Publishing Co. (1978) · Zbl 0383.65058
[27] T. Davis, Algorithm 832: UMFPACK V4.3 - an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw., 30, (2004) 196-199 · Zbl 1072.65037 · doi:10.1145/992200.992206
[28] M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math., 43, (2002) 57-74 · Zbl 1023.76048
[29] H.C. Elman, D.J. Silvester and A.J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford University Press (2014) · Zbl 1304.76002 · doi:10.1093/acprof:oso/9780199678792.001.0001
[30] V.J. Ervin, E.W. Jenkins and S. Sun, Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal., 47, (2009) 929-952 · Zbl 1279.76032
[31] M. Fernández, Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid. C.R. Math., 349, (2011) 473-477 · Zbl 1344.76026 · doi:10.1016/j.crma.2011.03.001
[32] Galdi, G. P. Fundamental Trends in Fluid-structure Interaction. Vol. 1 of Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications (Hackensack, NJ: World Scientific Publishing Co., Pte. Ltd.) · Zbl 1410.76010
[33] J. Galvis and M. Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal., 26, (2007) 350-384 · Zbl 1170.76024
[34] G. Gatica, S. Meddahi and R. Oyarzúa, A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal., 29, (2009) 86-108 · Zbl 1157.76025
[35] G. Gatica, A. Márquez, R. Oyarzúa and R. Rebolledo, Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media. Comput. Methods Appl. Mech. Eng., 270, (2014) 76-112 · Zbl 1296.76147 · doi:10.1016/j.cma.2013.11.017
[36] F. Hecht, New development in FreeFem++. J. Numer. Math., 20, (2012) 251-265 · Zbl 1266.68090 · doi:10.1515/jnum-2012-0013
[37] M. Jayadharan, E. Khattatov and I. Yotov, Domain decomposition methods for mixed finite element discretizations of the Biot system of poroelasticity. Comput. Geosci., 25, (2021) 1919-1938 · Zbl 1477.65159 · doi:10.1007/s10596-021-10091-w
[38] E. Khattatov and I. Yotov, Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry. ESAIM: M2AN, 53, (2019) 2081-2108 · Zbl 1434.65263 · doi:10.1051/m2an/2019057
[39] H. Kunwar, H. Lee and K. Seelman, Second-order time discretization for a coupled quasi-Newtonian fluid-poroelastic system. Int. J. Numer. Methods Fluids, 92, (2020) 687-702 · doi:10.1002/fld.4801
[40] W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal., 40, (2002) 2195-2218 · Zbl 1037.76014
[41] J. Lee, Robust error analysis of coupled mixed methods for Biot’s consolidation model. J. Sci. Comput., 69, (2016) 610-632 · Zbl 1368.65234 · doi:10.1007/s10915-016-0210-0
[42] V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput., 26, (2005) 1667-1691 · Zbl 1083.76058
[43] T. Richter, Fluid-structure Interactions: Models, Analysis and Finite Elements, 118. Springer (2017) · Zbl 1374.76001 · doi:10.1007/978-3-319-63970-3
[44] B. Riviere and I. Yotov, Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal., 42, (2005) 1959-1977 · Zbl 1084.35063 · doi:10.1137/S0036142903427640
[45] P.G. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math., 2, (1971) 93-101 · Zbl 0271.76080
[46] Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Vol. 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997) · Zbl 0870.35004
[47] Showalter, R. E. in Poroelastic filtration coupled to Stokes flow. In: Control Theory of Partial Differential Equations, (Boca Raton, FL: Chapman& Hall/CRC), Lect. Notes Pure Appl. Math., 242, 229-241 · Zbl 1084.76070
[48] R.E. Showalter, Nonlinear degenerate evolution equations in mixed formulation. SIAM J. Math. Anal., 42, (2010) 2114-2131 · Zbl 1237.47079 · doi:10.1137/100789427
[49] D. Vassilev, C. Wang and I. Yotov, Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng., 268, (2014) 264-283 · Zbl 1295.76036
[50] J. Wen and Y. He, A strongly conservative finite element method for the coupled Stokes-Biot model. Comput. Math. Appl., 80, (2020) 1421-1442 · Zbl 1447.65094 · doi:10.1016/j.camwa.2020.07.001
[51] H.K. Wilfrid, Nonconforming finite element methods for a Stokes/Biot fluid-poroelastic structure interaction model. Results Appl. Math., 7, (2020) · Zbl 1464.74215
[52] S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Meth. Partial. Differ. Equ., 30, (2014) 1189-1210 · Zbl 1350.74024 · doi:10.1002/num.21865
[53] S.-Y. Yi, A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal., 55, (2017) 1915-1936 · Zbl 1430.74140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.