×

Homogenization of Norton-Hoff fibered composites with high viscosity contrast. (English) Zbl 1482.35029

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74Q99 Homogenization, determination of effective properties in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), pp. 1482-1518, https://doi.org/10.1137/0523084. · Zbl 0770.35005
[2] M. Bellieud, Homogenization of evolution problems in a fiber reinforced structure, J. Convex Anal., 11 (2004), pp. 363-385. · Zbl 1071.35011
[3] M. Bellieud, A notion of capacity related to linear elasticity: Applications to homogenization, Arch. Ration. Mech. Anal., 203 (2012), pp. 137-187. · Zbl 1284.74012
[4] M. Bellieud, Problèmes capacitaires en viscoplasticité avec effets de torsion, C. R. Math. Acad. Sci. Paris, 351 (2013), pp. 241-245. · Zbl 1307.74021
[5] M. Bellieud, Quelques problèmes d’homogénéisation à fort contraste en élasticité, Habilitation à diriger les recherches, Université Montpellier II, 2013.
[6] M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Non local effects, Ann. Scuola Norm. Sup. Cl. Sci. IV, 26 (1998), pp. 407-436. · Zbl 0919.35014
[7] M. Bellieud and I. Gruais, Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects, J. Math. Pures Appl., 84 (2005), pp. 55-96. · Zbl 1079.74052
[8] M. Bellieud, C. Licht, and S. Orankitjaroen, Non linear capacitary problems for a general distribution of fibers, Appl. Math. Res. Express., 1 (2014), pp. 1-51. · Zbl 1291.74151
[9] G. Bouchitté and G. Dal Maso, Integral representation and relaxation of convex local functionals on \(BV(\Omega)\), Ann. Scuola Norm. Sup. Cl. Sci. IV, 20 (1993), pp. 483-533. · Zbl 0802.49008
[10] G. Bouchitte and D. Felbacq, Homogenization of a wire photonic crystal: The case of small volume fraction, SIAM J. Appl. Math., 66 (2006), pp. 2061-2084, https://doi.org/10.1137/050633147. · Zbl 1116.28005
[11] G. Bouchitté and I. Fragalà, Homogenization of thin structures by two-scale method with respect to measures, SIAM J. Math. Anal., 32 (2001), pp. 1198-1226, https://doi.org/10.1137/S0036141000370260. · Zbl 0986.35015
[12] G. Bouchitte and M. Valadier, Integral representation of convex functionals on a space of measures, J. Funct. Anal., 80 (1988), pp. 398-420. · Zbl 0662.46009
[13] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. · Zbl 1220.46002
[14] M. Briane, Homogenization of the Stokes equations with high-contrast viscosity, J. Math. Pures Appl., 82 (2003), pp. 843-876. · Zbl 1058.35024
[15] D. Caillerie and B. Dinari, A perturbation problem with two small parameters in the framework of the heat conduction of a fiber reinforced body, in Partial Differential Equations (Warsaw, 1987), Banach Center Publ. 19, PWN, Warsaw, 1987, pp. 59-78. · Zbl 0659.35029
[16] D. Cioranescu, A. Damlamian, and G. Griso, Periodic unfolding and Homogenization, C. R. Math. Acad. Sci., Paris, 335 (2002), pp. 99-104. · Zbl 1001.49016
[17] B. Dacorogna, Direct Method in the Calculus of Variations, 2nd ed., Springer-Verlag, Berlin, 2008. · Zbl 1140.49001
[18] G. Dal Maso, An Introduction to \(\Gamma \)-Convergence, Birkhäuser, 1993. · Zbl 0816.49001
[19] V. N. Fenchenko and E. Y. Khruslov, Asymptotic behavior of solutions of differential equations with a strongly oscillating coefficient matrix that does not satisfy a uniform boundedness condition, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 4 (1981), pp. 24-27 (in Russian). · Zbl 0455.35010
[20] G. Geymonat and P. Suquet, Functional spaces for Norton-Hoff materials, Math. Methods Appl. Sci., 8 (1986), pp. 206-222. · Zbl 0616.73010
[21] H. J. Hoff, Approximate analysis of structures in presence of moderately large creep deformation, Quart. Appl. Math., 12 (1954), pp. 49-55. · Zbl 0057.40803
[22] M. E. Kassner, Fundamentals of Creep in Metals and Alloys, Butterworth-Heinemann, Elsevier, 2015.
[23] E. Y. Khruslov, Homogenized Models of Composite Media, Progr. Nonlinear Differential Equations Appl., 5, Birkhäuser, 1991. · Zbl 0737.73009
[24] V. A. Kondratiev and O. A. Oleinik, Boundary value problems for a system in elasticity theory in unbounded domains, Korn’s inequalities, Uspekhi Mat. Nauk, 43 (1988), pp. 55-98; translation in Russian Math. Surveys 43 (1988), pp. 65-119.
[25] J. Lemaitre and J. Chaboche, Mechanics of Solid Materials, Cambridge University Press, 1990. · Zbl 0743.73002
[26] A. V. Marchenko and E. Y. Khruslov, New results in the theory of boundary value problems for regions with closed-grained boundaries, Uspekhi Mat. Nauk, 33 (1978), p. 127.
[27] J. J. Moreau, Duality characterization of strain tensor distributions in an arbitrary open set, J. Math. Anal. Appl., 72 (1979), pp. 760-770. · Zbl 0496.73017
[28] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), pp. 608-623, https://doi.org/10.1137/0520043. · Zbl 0688.35007
[29] F. H. Norton, The Creep of Steel at High Temperature, McGraw-Hill, New York, 1929.
[30] C. Pideri and P. Seppecher, A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium, Contin. Mech. Thermodyn., 9 (1997), pp. 241-257. · Zbl 0893.73006
[31] P. Villaggio, The main elastic capacities of a spheroid, Arch. Rational Mech. Anal., 92 (1986), pp. 337-353. · Zbl 0607.73012
[32] V. V. Zhikov, On an extension and an application of the two-scale convergence method, Sb. Math., 191 (2000), pp. 973-1014. · Zbl 0969.35048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.