×

Simple, accurate, and efficient embedded finite element methods for fluid-solid interaction. (English) Zbl 1507.74484

Summary: This work presents a new approach to implementing a recently proposed optimal order Cut Finite Element Method (CutFEM) for problems with moving embedded solid structures in viscous incompressible flows. This new approach uses the notion of equivalent polynomials, introduced previously in the context of the eXtended Finite Element Methods (XFEM), to implement exact integration for terms involving products of polynomials with Heaviside and Dirac distributions. Combining CutFEM and equivalent polynomials results in a method for fluid-structure interaction that (1) has the same number of degrees of freedom as the underlying conforming Galerkin method on the fixed background mesh, which is independent of the configuration of non-conforming interfaces, (2) has the same element assembly structure as classical FEM on the background mesh – with standard quadrature rules, and (3) retains the convergence properties, indeed the precise theoretical structure, of the original CutFEM method. The result is a method that is robust, accurate, and efficient for interacting particles, and which provides a convenient approach for upgrading legacy finite element codes to include embedded boundaries with CutFEM or similar formulations that can retain the same asymptotic accuracy as the underlying boundary conforming finite element method.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

PETSc; SymPy; CutFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kawamoto, R.; Andò, E.; Viggiani, G.; Andrade, J. E., Level set discrete element method for three-dimensional computations with triaxial case study, J. Mech. Phys. Solids, 91, 1-13 (2016)
[2] Massing, A.; Schott, B.; Wall, W., A stabilized Nitsche cut finite element method for the Oseen problem, Comput. Methods Appl. Mech. Engrg., 328, 262-300 (2018) · Zbl 1439.76087
[3] Ventura, G., On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method, Internat. J. Numer. Methods Engrg., 66, 5, 761-795 (2006) · Zbl 1110.74858
[4] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[5] Evans, L. C., Partial Differential Equations: Second Edition (2010), American Mathematical Society: American Mathematical Society Providence, R.I · Zbl 1194.35001
[6] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North Holland · Zbl 0383.65058
[7] Ern, A.; Guermond, J.-L., Theory and Practice of Finite Elements (2004), Springer: Springer New York · Zbl 1059.65103
[8] Hughes, T. J.; Engel, G.; Mazzei, L.; Larson, M. G., The continuous Galerkin method is locally conservative, J. Comput. Phys., 163, 2, 467-488 (2000) · Zbl 0969.65104
[9] Kees, C. E.; Akkerman, I.; Farthing, M. W.; Bazilevs, Y., A conservative level set method suitable for variable-order approximations and unstructured meshes, J. Comput. Phys., 230, 12, 4536-4558 (2011) · Zbl 1416.76214
[10] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[11] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitscheõs method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 16 (2002)
[12] Burman, E.; Claus, S.; Hansbo, P.; Larson, M. G.; Massing, A., CutFEM: Discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104, 7, 472-501 (2015) · Zbl 1352.65604
[13] Burman, E., Ghost penalty, C. R. Math., 348, 21-22, 1217-1220 (2010) · Zbl 1204.65142
[14] Burman, E.; Fernández, M. A.; Frei, S., A Nitsche-based formulation for fluid-structure interactions with contact, ESAIM: Mathematical Modelling and Numerical Analysis, 54, 2, 531-564 (2020) · Zbl 1434.74102
[15] E. Burman, M.A. Fernández, S. Frei, F.M. Gerosa, 3D-2D Stokes-Darcy Coupling for the Modelling of Seepage with an Application to Fluid-Structure Interaction with Contact, in: ENUMATH, 2019, pp. 215-223, http://dx.doi.org/10.1007/978-3-030-55874-1_20. · Zbl 1470.76029
[16] Schott, B.; Ager, C.; Wall, W. A., Monolithic cut finite element-based approaches for fluid-structure interaction, Internat. J. Numer. Methods Engrg., 119, 8, 757-796 (2019)
[17] LeVeque, R. J.; Li, Z., The immersed interface method for Elliptic Equations with discontinuous coefficients and Singular Sources, SIAM J. Numer. Anal., 31, 4, 1019-1044 (1994) · Zbl 0811.65083
[18] Li, Z.; Lin, T.; Wu, X., New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 1, 61-98 (2003) · Zbl 1055.65130
[19] Ji, H.; Chen, J.; Li, Z., A symmetric and consistent immersed finite element method for interface problems, J. Sci. Comput., 61, 3, 533-557 (2014) · Zbl 1308.65198
[20] Ji, H.; Chen, J.; Li, Z., A new augmented immersed finite element method without using SVD interpolations, Numer. Algorithms, 71, 2, 395-416 (2016) · Zbl 1333.65132
[21] Badia, S.; Verdugo, F.; Martín, A. F., The aggregated unfitted finite element method for elliptic problems, Comput. Methods Appl. Mech. Engrg., 336, 533-553 (2018) · Zbl 1440.65175
[22] Verdugo, F.; Martín, A. F.; Badia, S., Distributed-memory parallelization of the aggregated unfitted finite element method, Comput. Methods Appl. Mech. Engrg., 357, Article 112583 pp. (2019) · Zbl 1442.65280
[23] Main, A.; Scovazzi, G., The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems, J. Comput. Phys., 372, 972-995 (2018) · Zbl 1415.76457
[24] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 3, 220-252 (1977) · Zbl 0403.76100
[25] Griffith, B. E.; Patankar, N. A., Immersed methods for fluid-structure interaction, Annu. Rev. Fluid Mech., 52, 1, 421-448 (2020) · Zbl 1439.76140
[26] Shahmiri, S.; Gerstenberger, A.; Wall, W. A., An XFEM-based embedding mesh technique for incompressible viscous flows, Internat. J. Numer. Methods Fluids, 65, 1-3, 166-190 (2011) · Zbl 1428.76103
[27] Glowinski, R., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow., 40 (1999) · Zbl 1137.76592
[28] Fedkiw, R. P., Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the Ghost Fluid Method, J. Comput. Phys., 175, 1, 200-224 (2002) · Zbl 1039.76050
[29] Holdych, D. J.; Noble, D. R.; Secor, R. B., Quadrature rules for triangular and tetrahedral elements with generalized functions, Internat. J. Numer. Methods Engrg., 73, 9, 1310-1327 (2008) · Zbl 1167.74043
[30] Meurer, A.; Smith, C. P.; Paprocki, M.; Čertík, O.; Kirpichev, S. B.; Rocklin, M.; Kumar, A.; Ivanov, S.; Moore, J. K.; Singh, S.; Rathnayake, T.; Vig, S.; Granger, B. E.; Muller, R. P.; Bonazzi, F.; Gupta, H.; Vats, S.; Johansson, F.; Pedregosa, F.; Curry, M. J.; Terrel, A. R.; Roučka, Š.; Saboo, A.; Fernando, I.; Kulal, S.; Cimrman, R.; Scopatz, A., SymPy: Symbolic computing in Python, PeerJ Comput. Sci., 3, Article e103 pp. (2017)
[31] Ventura, G.; Benvenuti, E., Equivalent polynomials for quadrature in Heaviside function enriched elements, Internat. J. Numer. Methods Engrg., 102, 3-4, 688-710 (2015) · Zbl 1352.65559
[32] Abedian, A.; Düster, A., Equivalent Legendre polynomials: Numerical integration of discontinuous functions in the finite element methods, Comput. Methods Appl. Mech. Engrg., 343, 690-720 (2019) · Zbl 1440.65166
[33] Tornberg, A.-K., Multi-dimensional quadrature of singular and discontinuous functions, BIT, 42, 3, 26 (2002) · Zbl 1021.65010
[34] Zhu, L.; Masud, A., Variationally derived interface stabilization for discrete multiphase flows and relation with the ghost-penalty method, Comput. Methods Appl. Mech. Engrg., 373, Article 113404 pp. (2021) · Zbl 1506.76140
[35] Kang, S.; Masud, A., A variational multiscale method with immersed boundary conditions for incompressible flows, Meccanica, 56, 1397-1422 (2021) · Zbl 1520.76067
[36] Schäfer, M.; Turek, S.; Durst, F.; Krause, E.; Rannacher, R., Benchmark computations of laminar flow around a cylinder, (Hirschel, E. H.; Fujii, K.; van Leer, B.; Leschziner, M. A.; Pandolfi, M.; Rizzi, A.; Roux, B.; Hirschel, E. H., Flow Simulation with High-Performance Computers II, Vol. 48 (1996), Vieweg+Teubner Verlag: Vieweg+Teubner Verlag Wiesbaden), 547-566 · Zbl 0874.76070
[37] Stein, D. B.; Guy, R. D.; Thomases, B., Immersed boundary smooth extension (IBSE): A high-order method for solving incompressible flows in arbitrary smooth domains, J. Comput. Phys., 335, 155-178 (2017) · Zbl 1375.76038
[38] Feng, J.; Hu, H. H.; Joseph, D. D., Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation, J. Fluid Mech., 261, 95-134 (1994) · Zbl 0800.76114
[39] Patankar, N. A.; Singh, P.; Joseph, D. D.; Glowinski, R., A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow., 16 (2000) · Zbl 1137.76712
[40] Glowinski, R.; Pan, T.; Hesla, T.; Joseph, D.; Périaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys., 169, 2, 363-426 (2001) · Zbl 1047.76097
[41] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 2, 448-476 (2005) · Zbl 1138.76398
[42] Niu, X.; Shu, C.; Chew, Y.; Peng, Y., A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys. Lett. A, 354, 3, 173-182 (2006) · Zbl 1181.76111
[43] Kempe, T.; Fröhlich, J., An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J. Comput. Phys., 231, 9, 3663-3684 (2012) · Zbl 1402.76143
[44] Wang, L.; Guo, Z.; Mi, J., Drafting, kissing and tumbling process of two particles with different sizes, Comput. & Fluids, 96, 20-34 (2014) · Zbl 1391.76796
[45] Zhang, Z. L.; Walayat, K.; Chang, J. Z.; Liu, M. B., Meshfree modeling of a fluid-particle two-phase flow with an improved SPH method, Internat. J. Numer. Methods Engrg., 116, 8, 530-569 (2018)
[46] Kolahdouz, E.; Bhalla, A.; Scotten, L.; Craven, B.; Griffith, B., A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction, J. Comput. Phys., 443, Article 110442 pp. (2021) · Zbl 07515403
[47] von Wahl, H.; Richter, T.; Frei, S.; Hagemeier, T., Falling balls in a viscous fluid with contact: Comparing numerical simulations with experimental data, Phys. Fluids, 33, 3, Article 033304 pp. (2021)
[48] Akkerman, I.; Bazilevs, Y.; Benson, D. J.; Farthing, M. W.; Kees, C. E., Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics, J. Appl. Mech., 79, 1, 010905-010905-11 (2011)
[49] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; May, D. A.; McInnes, L. C.; Mills, R. T.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., PETSc web page (2021), https://www.mcs.anl.gov/petsc
[50] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; May, D. A.; McInnes, L. C.; Mills, R. T.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., PETSc Users ManualTech. Rep. ANL-95/11 - Revision 3.15 (2021), Argonne National Laboratory
[51] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhauser Press), 163-202 · Zbl 0882.65154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.