A thermodynamic approach to rate-type models of elastic-plastic materials. (English) Zbl 07464177

The objective of the paper is to derive rate-independent models, which are either non-dissipative, or dissipative and compatible with the second law of thermodynamics. Under the supposition that the Helmholtz (or Gibbs) free energy and the product of entropy, called the rate of dissipation ( denoted by \(\Gamma\), with \(\Gamma \geq 0\)), are constitutive functions dependent on a certain set of independent variables, the second law of thermodynamics is reduced to the appropriate dissipation equalities in Section 3 and 4. The dissipation equalities (9) and (14) are written in terms of symmetric Piola Kirchhoff, \(T_{RR}\), Green-St. Venant deformation tensor, \(E\), and their time derivative, with respect to the reference configuration. By passing to the Eulerian description, the dissipation equalities are rewritten under the form (10) and (15) in terms of Cauchy stress, Eulerian Almansi strain tensor, and their objective derivatives, namely Truesdell stress derivative and stretching tensor, respectively. In Section 5 the three dimensional, finite deformation models are derived for special selections of \(\Gamma\), namely \(\Gamma\) depends either on \(\displaystyle{\frac{d}{d t}} E,\) \(\displaystyle{\frac{d}{d t}} T_{RR},\) via their norms, or on stress power \(T_{RR} \cdot \displaystyle{\frac{d}{d t}} E,\) with appropriate rate-independent non-negative, proportional factors. When these factors are vanishing the non-dissipative models follow. Based on the decomposition of a second order tensor given in Proposition 1, the Truesdell hypo-elastic type, rate-independent, but non-dissipative models are provided in the reference configuration, (20), while their counterpart, (24), written in the spatial description, expresses the Truesdell stress derivative as linear tensor function with respect to the stretching tensor. The rate-independent constitutive equations (23) and (25) are associated with general dissipative equations using the same decomposition result. The mentioned constitutive equations are derived under the hypothesis that the free energy essentially depends on stress tensor. The appropriate fourth-order tensor valued functions are dependent on the stress and strain measures and contain parts which do not generate power, as a consequence of the decomposition given in Proposition 1. The one-dimensional models, proposed in Sections 6–11, describe the material response either to cyclic strain-driven or to cyclic stress-driven processes. The irreversible material behaviour of Duhem like solids (as the authors called them) is characterized in terms of the stress induced by a given appropriate deformation process, or of the strain generated by a certain given stress process, respectively. The proposed models are compared with elastic-plastic models existing in the literature.


74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74A15 Thermodynamics in solid mechanics
74A20 Theory of constitutive functions in solid mechanics
Full Text: DOI


[1] Aifantis, E. C., Strain gradient interpretation of size effects, Int. J. Fract., 95, 299-314 (1999)
[2] Bruhns, O. T., The Prandtl-Reuss equations revisited, Z. Angew. Math. Mech., 94, 187-202 (2014) · Zbl 1369.74003
[3] Bruhns, O. T.; Meyers, A.; Xiao, H., On non-corotational rates of Oldroyd’s type and relevant issues in rate constitutive formulations, Proc. R. Soc. Lond. A, 460, 909-928 (2004) · Zbl 1041.74015
[4] Cermelli, P.; Fried, E.; Sellers, S., Configurational stress, yield and flow in rate-independent plasticity, Proc. R. Soc. Lond. A, 457, 1447-1467 (2001) · Zbl 1014.74016
[5] Cichra, D.; Průša, V., A thermodynamic basis for implicit rate-type constitutive relations describing the inelastic response of solids undergoing finite deformation, Math. Mech. Solids, 25, 2222-2230 (2020) · Zbl 1482.74008
[6] Del Piero, G., On the decomposition of the deformation gradient in plasticity, J. Elast., 131, 111-124 (2018) · Zbl 1387.74028
[7] Dressler, M.; Edwards, B. J.; Öttinger, H. C., Macroscopic thermodynamics of flowing polymeric liquids, Rheol. Acta, 38, 117-136 (1999)
[8] Ericksen, J. L., Hypo-elastic potentials, Q. J. Mech. Appl. Math., 11, 67-72 (1958) · Zbl 0083.18801
[9] Fabrizio, M.; Giorgi, C.; Morro, A., Internal dissipation, relaxation property, and free energy in materials with fading memory, J. Elast., 40, 107-122 (1995) · Zbl 0853.73024
[10] Fâciu, C.; Mihâilescu-Suliciu, M., The energy in one-dimensional rate-type semilinear viscoelasticity, Int. J. Solids Struct., 23, 1505-1520 (1987) · Zbl 0653.73018
[11] Fülöp, T.; Ván, P., Kinematic quantities of finite elastic and plastic deformation, Math. Methods Appl. Sci., 35, 1825-1841 (2012) · Zbl 1397.74008
[12] Giorgi, C.; Morro, A., A thermodynamic approach to hysteretic models in ferroelectrics, Math. Comput. Simul., 176, 181-194 (2020) · Zbl 07318070
[13] Green, A. E.; Naghdi, P. M., A re-examination of the basic postulates of thermomechanics, Proc. R. Soc. Lond. A, 432, 171-194 (1991) · Zbl 0726.73004
[14] Gurtin, M. E.; Anand, J., A theory of strain gradient plasticity for isotropic, plastically irrotational materials. Part I, small deformations, J. Mech. Phys. Solids, 53, 1624-1649 (2005) · Zbl 1120.74353
[15] Gurtin, M. E.; Fried, E.; Anand, L., The Mechanics and Thermodynamics of Continua (2010), Cambridge: Cambridge University Press, Cambridge
[16] Gurtin, M. E.; Williams, W. O.; Suliciu, I., On rate-type constitutive equations and the energy of viscoelastic and viscoplastic materials, Int. J. Solids Struct., 16, 607-617 (1980) · Zbl 0433.73004
[17] Han, W.; Reddy, B. D., Plasticity (2013), Berlin: Springer, Berlin · Zbl 1258.74002
[18] Haupt, P., Continuum Mechanics and Theory of Materials (2002), Berlin: Springer, Berlin · Zbl 0993.74001
[19] Hutchinson, J. W., Plasticity in the micron scale, Int. J. Solids Struct., 37, 225-238 (2000) · Zbl 1075.74022
[20] Ismail, M.; Ikhouane, F.; Rodellar, J., The hysteresis Bouc-Wen model – a survey, Arch. Comput. Methods Eng., 16, 161-188 (2009) · Zbl 1170.74300
[21] Kojic, M.; Bathe, K.-J., Studies of finite element procedures—stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian jaumann formulation, Comput. Struct., 26, 175-179 (1987) · Zbl 0609.73074
[22] Kröner, E., Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Ration. Mech. Anal., 4, 273-334 (1960) · Zbl 0090.17601
[23] Lee, E. H.; Liu, D. T., Finite-strain elastic-plastic theory with application to plane-wave analysis, J. Appl. Phys., 38, 19-27 (1967)
[24] Leonov, A. I., Nonequilibrium thermodynamics and rheology of viscoelastic polymer media, Rheol. Acta, 15, 85-98 (1976) · Zbl 0351.73001
[25] Lubliner, J., A maximum-dissipation principle in generalized plasticity, Acta Mech., 52, 225-237 (1984) · Zbl 0572.73043
[26] McBride, A. T.; Reddy, B. D.; Steinmann, P., Dissipation-consistent modelling and classification of extended plasticity formulations, J. Mech. Phys. Solids, 119, 118-139 (2018)
[27] Meyers, A.; Xiao, H.; Bruhns, O. T., Choice of objective rate in single parameter hypoelastic deformation cycles, Comput. Struct., 84, 1134-1140 (2006)
[28] Mihâilescu-Suliciu, M.; Suliciu, I., Energy for hypoelastic constitutive equations, Arch. Ration. Mech. Anal., 70, 168-179 (1979) · Zbl 0418.73006
[29] Morro, A., Evolution equations for non-simple viscoelastic solids, J. Elast., 105, 93-105 (2011) · Zbl 1268.74008
[30] Morro, A.; Giorgi, C., Objective rate equations and memory properties in continuum physics, Math. Comput. Simul., 176, 243-253 (2020) · Zbl 07318074
[31] Noll, W., On the continuity of the solid and fluid states, J. Ration. Mech. Anal., 4, 3-81 (1956) · Zbl 0064.42001
[32] Noll, W., A new mathematical theory of simple materials, Arch. Ration. Mech. Anal., 48, 1-50 (1972) · Zbl 0271.73006
[33] Oliver, X.; Agelet de Saracibar, C., Continuum Mechanics for Engineers. Theory and Problems (2017)
[34] Owen, D. R., Elasticity with gradient-disarrangements, a multiscale perspective for strain-gradient theories of elasticity and of plasticity, J. Elast., 127, 115-150 (2017) · Zbl 1426.74049
[35] Peshkov, I.; Boscheri, W.; Loubère, R.; Romenski, E.; Dumbser, M., Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity, J. Comput. Phys., 387, 481-521 (2019) · Zbl 1452.74022
[36] Prager, W., An elementary discussion of definitions of stress rate, Q. Appl. Math., 18, 403-407 (1961) · Zbl 0097.39601
[37] Puzrin, A. M.; Houlsby, G. T., Fundamentals of kinematic hardening hyperplasticity, Int. J. Solids Struct., 38, 3771-3794 (2001) · Zbl 0987.74021
[38] Rajagopal, K. R.; Srinavasa, A. R., On the thermomechanics of shape memory wires, Z. Angew. Math. Phys., 50, 459-496 (1999) · Zbl 0951.74005
[39] Rajagopal, K. R., On implicit constitutive theories, Appl. Math., 48, 279-319 (2003) · Zbl 1099.74009
[40] Rajagopal, K. R., On implicit constitutive theories for fluids, J. Fluid Mech., 550, 243-249 (2006) · Zbl 1097.76009
[41] Rajagopal, K. R.; Srinavasa, A. R., A thermodynamic framework for rate type fluid models, J. Non-Newton. Fluid Mech., 88, 207-227 (2000) · Zbl 0960.76005
[42] Rajagopal, K. R.; Srinavasa, A. R., Inelastic response of solids described by implicit constitutive relations with nonlinear small strain elastic response, Int. J. Plast., 71, 1-9 (2015)
[43] Rajagopal, K. R.; Srinavasa, A. R., An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation, Z. Angew. Math. Phys., 67, 86 (2016) · Zbl 1359.74053
[44] Steigmann, D. J.; Merodio, J.; Ogden, R., A primer on plasticity, Constitutive Modelling of Solid Continua. Solid Mechanics and Its Applications (2020), Cham: Springer, Cham
[45] Suliciu, I.; Sabac, M., Energy estimates in one-dimensional rate-type viscoplasticity, J. Math. Anal. Appl., 131, 354-372 (1988) · Zbl 0637.73039
[46] Thomas, T. Y., On the structure of the stress-strain relations, Proc. Natl. Acad. Sci., 41, 716-720 (1955) · Zbl 0065.18006
[47] Truesdell, C., The simplest rate theory of pure elasticity, Commun. Pure Appl. Math., 8, 123-132 (1955) · Zbl 0064.42003
[48] Truesdell, C., Hypo-elasticity, J. Ration. Mech. Anal., 4, 83-133 (1955) · Zbl 0064.42002
[49] Truesdell, C.; Noll, W.; Flügge, S., The non-linear field theory of mechanics, Encyclopedia of Physics (1965), Berlin: Springer, Berlin
[50] Vaiana, N.; Sessa, S.; Marmo, F.; Rosati, L., A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials, Nonlinear Dyn., 93, 1647-1669 (2018)
[51] Visintin, A., Differential Models of Hysteresis (1994), Berlin: Springer, Berlin · Zbl 0820.35004
[52] Visintin, A.; Bertotti, G.; Mayergoyz, I., Mathematical models of hysteresis, The Size of Hysteresis (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1149.35077
[53] Wapperom, P.; Hulsen, M. A., Thermodynamics of viscoelastic fluids, the temperature equation, J. Rheol., 42, 999-1019 (1998)
[54] Xiao, H., Hencky strain and Hencky model, extending history and ongoing tradition, Multidiscip. Model. Mater. Struct., 1, 1-52 (2005)
[55] Xiao, H.; Bruhns, O. T.; Meyers, A., Hypoelasticity model based upon the logarithmic stress rate, J. Elast., 47, 51-68 (1997) · Zbl 0888.73011
[56] Xiao, H.; Bruhns, O. T.; Meyers, A., A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity, J. Elast., 56, 59-93 (1999) · Zbl 0970.74008
[57] Xiao, H.; Bruhns, O. T.; Meyers, A., The choice of objective rates in finite elastoplasticity, general results on the uniqueness of the logarithmic rate, Proc. R. Soc. Lond. A, 456, 1865-1882 (2000) · Zbl 1046.74010
[58] Ziegler, H., An Introduction to Thermomechanics (1977), Amsterdam: North Holland, Amsterdam · Zbl 0358.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.