×

Quantum criticality of the Ohmic spin-boson model in a high dense spectrum: symmetries, quantum fluctuations and correlations. (English) Zbl 07462292

Summary: Study of dissipative quantum phase transitions in the Ohmic spin-boson model is numerically challenging in a dense limit of environmental modes. In this work, large-scale numerical simulations are carried out based on the variational principle. The validity of variational calculations, spontaneous breakdown of symmetries, and quantum fluctuations and correlations in the Ohmic bath are carefully analyzed, and the critical coupling as well as exponents are accurately determined in the weak tunneling and continuum limits. In addition, quantum criticality of the Ohmic bath is uncovered both in the delocalized phase and at the transition point.

MSC:

82-XX Statistical mechanics, structure of matter
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Weiss, U., Quantum Dissipative Systems (2007), World Scientific: World Scientific Singapore
[2] K.L. Hur, CRC Press, Boca Raton, 2010, Ch.9, pp. 217-240.
[3] Sachdev, S., Quantum Phase Transitions (2011), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 1233.82003
[4] Leggett, A. J.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P.A.; Garg, A.; Zwerger, W., Dynamics of the dissipative two-state system, Rev. Modern Phys., 59, 1-85 (1987)
[5] Hur, K. L., Entanglement entropy decoherence and quantum phase transitions of a dissipative two-level system, Ann. Physics, 323, 2208-2240 (2008) · Zbl 1146.81016
[6] Breuer, H. P.; Laine, E. M.; Piilo, J.; Vacchini, B., Colloquium: Non-markovian dynamics in open quantum systems, Rev. Modern Phys., 88, Article 021002 pp. (2016)
[7] Lewis, J. T.; Raggio, G. A., The equilibrium thermodynamics of a spin-boson model, J. Stat. Phys., 50, 1201 (1988) · Zbl 1084.82507
[8] Golding, B.; Zimmerman, N. M.; Coppersmith, S. N., Dissipative quantum tunneling of a single microscopic defect in a mesoscopic metal, Phys. Rev. Lett., 68, 998-1001 (1992)
[9] Chakravarty, S.; Rudnick, J., Dissipative dynamics of a two-state system, the kondo problem, and the inverse-square ising model, Phys. Rev. Lett., 75, 501-504 (1995)
[10] Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T. K.; Mancal, T.; Cheng, Y. C.; Blankenship, R. E.; Fleming, G. R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature, 446, 782-786 (2007)
[11] Collini, E.; Scholes, G. D., Coherent intrachain energy migration in a conjugated polymer at room temperature, Science, 323, 369-373 (2009)
[12] Garbe, L.; Egusquiza, I. L.; Solano, E.; Ciuti, C.; Coudreau, T.; Milman, P.; Felicetti, S., Superradiant phase transition in the ultrastrong-coupling regime of the two-photon dicke model, Phys. Rev. A, 95, Article 053854 pp. (2017)
[13] Ota, Y.; Iwamoto, S.; Kumagai, N.; Arakawa, Y., Spontaneous two-photon emission from a single quantum dot, Phys. Rev. Lett., 107, Article 233602 pp. (2011)
[14] Porras, D.; Marquardt, F.; von Delft, J.; Cirac, J. I., Mesoscopic spin-boson models of trapped ions, Phys. Rev. A, 78 (2008), 010101(R)
[15] Uzdin, R.; Levy, A.; Kosloff, R., Equivalence of quantum heat machines, and quantum-thermodynamic signatures, Phys. Rev. X, 5, Article 031044 pp. (2015)
[16] Leppäkangas, J.; Braumüller, J.; Hauck, M.; Reiner, J.-M.; Schwenk, I.; Zanker, S.; Fritz, L.; Ustinov, A. V.; Weides, M.; Marthaler, M., Quantum simulation of the spin-boson model with a microwave circuit, Phys. Rev. A, 97, Article 052321 pp. (2018)
[17] Silbey, R.; Harris, R. A., Variational calculation of the dynamics of a two level system interacting with a bath, J. Chem. Phys., 80, 2615-2617 (1984)
[18] Chin, A. W.; Prior, J.; Huelga, S. F.; Plenio, M. B., Generalized polaron ansatz for the ground state of the sub-ohmic spin-boson model: An analytic theory of the localization transition, Phys. Rev. Lett., 107, Article 160601 pp. (2011)
[19] Nazir, A.; McCutcheon, D. P.S.; Chin, A. W., Ground state and dynamics of the biased dissipative two-state system: Beyond variational polaron theory, Phys. Rev. B, 85, Article 224301 pp. (2012)
[20] Bera, S.; Nazir, A.; Chin, A. W.; Baranger, H. U.; Florens, S., Generalized multipolaron expansion for the spin-boson model: Environmental entanglement and the biased two-state system, Phys. Rev. B, 90, Article 075110 pp. (2014)
[21] Wu, W.; Xu, J. B., Quantum coherence of spin-boson model at finite temperature, Ann. Physics, 377, 48-61 (2017)
[22] Pino, M.; García-Ripoll, J. J., Quantum annealing in spin-boson model: from a perturbative to an ultrastrong mediated coupling, New J. Phys., 20, Article 113027 pp. (2018)
[23] Nalbach, P.; Thorwart, M., Crossover from coherent to incoherent quantum dynamics due to sub-ohmic dephasing, Phys. Rev. B, 87, Article 014116 pp. (2013)
[24] Guo, C.; Weichselbaum, A.; von Delft, J.; Vojta, M., Critical and strong-coupling phases in one- and two-bath spin-boson models, Phys. Rev. Lett., 108, Article 160401 pp. (2012)
[25] Zhou, N. J.; Chen, L. P.; Zhao, Y.; Mozyrsky, D.; Chernyak, V.; Zhao, Y., Ground-state properties of sub-ohmic spin-boson model with simultaneous diagonal and off-diagonal coupling, Phys. Rev. B, 90, Article 155135 pp. (2014)
[26] Zhou, N. J.; Zhang, Y. Y.; Lü, Z. G.; Zhao, Y., Variational study of the two-impurity spincboson model with a common ohmic bath: Ground-state phase transitions, Ann. Phys., 530, Article 1800120 pp. (2018) · Zbl 07758078
[27] Wang, Y. Z.; He, S.; Duan, L. W.; Chen, Q. H., Rich phase diagram of quantum phases in the anisotropic subohmic spin-boson model, Phys. Rev. B, 101, Article 155147 pp. (2020)
[28] Guinea, F.; Hakim, V.; Muramatsu, A., Bosonization of a two-level system with dissipation, Phys. Rev. B, 32, 4410-4418 (1985)
[29] Orth, P. P.; Roosen, D.; Hofstetter, W.; Le Hur, K., Dynamics, synchronization, and quantum phase transitions of two dissipative spins, Phys. Rev. B, 82, Article 144423 pp. (2010)
[30] McCutcheon, D. P.S.; Nazir, A.; Bose, S.; Fisher, A. J., Separation-dependent localization in a two-impurity spin-boson model, Phys. Rev. B, 81, Article 235321 pp. (2010)
[31] Winter, A.; Rieger, H., Quantum phase transition and correlations in the multi-spin-boson model, Phys. Rev. B, 90, Article 224401 pp. (2014)
[32] Magazzù, L.; Forn-Díaz, P.; Belyansky, R.; Orgiazzi, J.-L.; Yurtalan, M. A.; Otto, M. R.; Lupascu, A.; Wilson, C. M.; Grifoni, M., Probing the strongly driven spin-boson model in a superconducting quantum circuit, Nature Commun., 9, 1403 (2018)
[33] Vojta, M.; Tong, N. H.; Bulla, R., Quantum phase transitions in the sub-ohmic spin-boson model: Failure of the quantum-classical mapping, Phys. Rev. Lett., 94, Article 070604 pp. (2005)
[34] Alvermann, A.; Fehske, H., Sparse polynomial space approach to dissipative quantum systems: Application to the sub-ohmic spin-boson model, Phys. Rev. Lett., 102, Article 150601 pp. (2009)
[35] Winter, A.; Rieger, H.; Vojta, M.; Bulla, R., Quantum phase transition in the sub-ohmic spin-boson model: Quantum monte carlo study with a continuous imaginary time cluster algorithm, Phys. Rev. Lett., 102, Article 030601 pp. (2009)
[36] Zhang, Y. Y.; Chen, Q. H.; Wang, K. L., Quantum phase transition in the sub-ohmic spin-boson model: An extended coherent-state approach, Phys. Rev. B, 81 (2010), 121105(R)
[37] Bulla, R.; Lee, H. J.; Tong, N. H.; Vojta, M., Numerical renormalization group for quantum impurities in a bosonic bath, Phys. Rev. B, 71, Article 045122 pp. (2005)
[38] Wang, H.; Shao, J., Quantum phase transition in the spin-boson model: A multilayer multiconfiguration time-dependent hartree study, J. Phys. Chem. A, 123, 1882-1893 (2019)
[39] De Filippis, G.; Candia, A.d.; Cangemi, L. M.; Sassetti, M.; Fazio, R.; Cataudella, V., Quantum phase transitions in the spin-boson model: Monte carlo method versus variational approach à la feynman, Phys. Rev. B, 101 (2020), 180408(R)
[40] Zheng, H.; Lü, Z. G.; Zhao, Y., Ansatz for the quantum phase transition in a dissipative two-qubit system, Phys. Rev. E, 91, Article 062115 pp. (2015)
[41] S. Florens, I. Snyman, Universal spatial correlations in the anisotropic kondo screening cloud: Analytical insights and numerically exact results from a coherent state expansion, Phys. Rev. B, 92, 195106, http://dx.doi.org/10.1103/PhysRevB.92.195106.
[42] He, S.; Duan, L. W.; Chen, Q. H., Improved Silbey-Harris polaron ansatz for the spin-boson model, Phys. Rev. B, 97, Article 115157 pp. (2018)
[43] Blunden-Codd, Z.; Bera, S.; Bruognolo, B.; Linden, N. O.; Chin, A. W.; von Delft, J.; Nazir, A.; Florens, S., Anatomy of quantum critical wave functions in dissipative impurity problems, Phys. Rev. B, 95, Article 085104 pp. (2017)
[44] Zhou, N. J.; Chen, L. P.; Xu, D. Z.; Chernyak, V.; Zhao, Y., Symmetry and the critical phase of the two-bath spin-boson model: Ground-state properties, Phys. Rev. B, 91, Article 195129 pp. (2015)
[45] Zhou, N. J.; Huang, Z. K.; Zhu, J. F.; Chernyak, V.; Zhao, Y., Polaron dynamics with a multitude of Davydov D2 trial states, J. Chem. Phys., 143, Article 014113 pp. (2015)
[46] Zhou, N. J.; Chen, L. P.; Huang, Z. K.; Sun, K. W.; Tanimura, Y.; Zhao, Y., Fast, accurate simulation of polaron dynamics and multidimensional spectroscopy by multiple Davydov trial states, J. Phys. Chem. A, 120, 1562-1576 (2016)
[47] Wang, L.; Chen, L. P.; Zhou, N. J.; Zhao, Y., Variational dynamics of the sub-ohmic spin-boson model on the basis of multiple Davydov D1 states, J. Chem. Phys., 144, Article 024101 pp. (2016)
[48] Wang, L.; Fujihashi, Y.; Chen, L. P.; Zhao, Y., Finite-temperature time-dependent variation with multiple Davydov states, J. Chem. Phys., 146, Article 124127 pp. (2017)
[49] Bulla, R.; Tong, N. H.; Vojta, M., Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model, Phys. Rev. Lett., 91, Article 170601 pp. (2003)
[50] Frenzel, M. F.; Plenio, M. B., Matrix product state representation without explicit local hilbert space truncation with applications to the sub-ohmic spin-boson model, New J. Phys., 15, 7, Article 073046 pp. (2013) · Zbl 1451.81044
[51] Kosterlitz, J. M., The critical properties of the two-dimensional xy model, J. Phys. C: Solid State Phys., 7, 6, 1046 (1974)
[52] Le Hur, K.; Doucet-Beaupré, P.; Hofstetter, W., Entanglement and criticality in quantum impurity systems, Phys. Rev. Lett., 99, Article 126801 pp. (2007)
[53] Yamamoto, T.; Kato, T., Microwave scattering in the subohmic spin-boson systems of superconducting circuits, J. Phys. Soc. Japan, 88, Article 094601 pp. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.