×

A simple history-dependent remeshing technique to increase finite element model stability in elastic surface deformations. (English) Zbl 1483.74088

Summary: In this paper we present and validate a simple adaptive surface remeshing technique to transfer history dependent variables from an old distorting mesh to a new mesh during finite element simulations of elastic surface deformation. This technique allows us to reduce the error arising from excessive mesh distortion whilst preserving information about the initial configuration of the mesh and the history dependent variables. The transfer technique presented here constructs the initial configuration of the new mesh by considering the distortion incurred by the elements of the old mesh and projecting backwards in time. Using this new initial configuration, the stress and strain over the new mesh can be easily calculated. After presenting the necessary steps to reconstruct the initial configuration, we show that this relatively simple transfer technique adds stability to finite element simulations and reduces the spatial error and the strain error across the domain. The novel transfer technique presented in this paper is easy to implement, released under an open source licence, and provides a simple strategy to add stability to simulations undergoing large deformations.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B20 Nonlinear elasticity
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Luo, Y., Dealing with extremely large deformation by nearest-nodes FEM with algorithm for updating element connectivity, Int. J. Solids Struct., 45, 18-19, 5074-5087 (2008) · Zbl 1169.74618
[2] Javani, H.; Peerlings, R.; Geers, M., Consistent remeshing and transfer for a three dimensional enriched mixed formulation of plasticity and non-local damage, Comput. Mech., 53, 4, 625-639 (2014) · Zbl 1398.74344
[3] Ghaffari, S.; Leask, R. L.; Jones, E. A., Simultaneous imaging of blood flow dynamics and vascular remodelling during development, Development, dev-127019 (2015)
[4] Krüger, T.; Varnik, F.; Raabe, D., Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Comput. Math. Appl., 61, 12, 3485-3505 (2011) · Zbl 1225.76231
[5] Osborne, J.; Bernabeu, M., A fully discrete open source framework for the simulation of vascular remodelling, (2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (2018), IEEE), 4552-4555
[6] Zeramdini, B.; Robert, C.; Germain, G.; Pottier, T., Numerical simulation of metal forming processes with 3D adaptive remeshing strategy based on a posteriori error estimation, Int. J. Mater. Form., 12, 3, 411-428 (2019)
[7] Dureisseix, D.; Bavestrello, H., Information transfer between incompatible finite element meshes: Application to coupled thermo-viscoelasticity, Comput. Methods Appl. Mech. Engrg., 195, 44-47, 6523-6541 (2006) · Zbl 1124.74046
[8] Srikanth, A.; Zabaras, N., Shape optimization and preform design in metal forming processes, Comput. Methods Appl. Mech. Engrg., 190, 13-14, 1859-1901 (2000) · Zbl 1002.74080
[9] Kumar, S.; Fourment, L.; Guerdoux, S., Parallel, second-order and consistent remeshing transfer operators for evolving meshes with superconvergence property on surface and volume, Finite Elem. Anal. Des., 93, 70-84 (2015)
[10] Hinton, E.; Campbell, J., Local and global smoothing of discontinuous finite element functions using a least squares method, Internat. J. Numer. Methods Engrg., 8, 3, 461-480 (1974) · Zbl 0286.73066
[11] Perić, D.; Hochard, C.; Dutko, M.; Owen, D., Transfer operators for evolving meshes in small strain elasto-placticity, Comput. Methods Appl. Mech. Engrg., 137, 3-4, 331-344 (1996) · Zbl 0884.73071
[12] Zienkiewicz, O.; Zhu, J., The superconvergent patch recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Engrg., 101, 1-3, 207-224 (1992) · Zbl 0779.73078
[13] Zienkiewicz, O.; Zhu, J., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33, 7, 1331-1364 (1992) · Zbl 0769.73084
[14] Zienkiewicz, O.; Zhu, J., The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 33, 7, 1365-1382 (1992) · Zbl 0769.73085
[15] P. Bussetta, J.-P. Ponthot, Comparison of field transfer methods between two meshes, in: Proceedings of IV European Conference on Computational Mechanics, 2010.
[16] Pere, B.; Páczelt, I., A mapping technique for a heat conduction problem on moving mesh using the hp-version of the finite element method, J. Comput. Appl. Mech., 3, 2, 169-191 (2002) · Zbl 1006.74083
[17] Kucharik, M.; Shashkov, M.; Wendroff, B., An efficient linearity-and-bound-preserving remapping method, J. Comput. Phys., 188, 2, 462-471 (2003) · Zbl 1022.65009
[18] Liszka, T., An interpolation method for an irregular net of nodes, Internat. J. Numer. Methods Engrg., 20, 9, 1599-1612 (1984) · Zbl 0544.65006
[19] Lee, N.-S.; Bathe, K.-J., Error indicators and adaptive remeshing in large deformation finite element analysis, Finite Elem. Anal. Des., 16, 2, 99-139 (1994) · Zbl 0804.73064
[20] Lobov, I.; Cheung, E.; Wudali, R.; Cao, J.; Halasz, G.; Wei, Y.; Economides, A.; Lin, H.; Papadopoulos, N.; Yancopoulos, G., The Dll4/Notch pathway controls post-angiogenic blood vessel remodeling and regression by modulating vasoconstriction and blood flow, Blood, blood-2010 (2011)
[21] Brancherie, D.; Villon, P.; Ibrahimbegovic, A., On a consistent field transfer in non linear inelastic analysis and ultimate load computation, Comput. Mech., 42, 2, 213-226 (2008) · Zbl 1304.74055
[22] Khoei, A.; Gharehbaghi, S., The superconvergence patch recovery technique and data transfer operators in 3D plasticity problems, Finite Elem. Anal. Des., 43, 8, 630-648 (2007)
[23] Boussetta, R.; Coupez, T.; Fourment, L., Adaptive remeshing based on a posteriori error estimation for forging simulation, Comput. Methods Appl. Mech. Engrg., 195, 48-49, 6626-6645 (2006) · Zbl 1120.74807
[24] Boroomand, B.; Zienkiewicz, O., Recovery by equilibrium in patches (REP), Internat. J. Numer. Methods Engrg., 40, 1, 137-164 (1997)
[25] Gu, H.; Zong, Z.; Hung, K., A modified superconvergent patch recovery method and its application to large deformation problems, Finite Elem. Anal. Des., 40, 5-6, 665-687 (2004)
[26] Wiberg, N.-E.; Abdulwahab, F.; Ziukas, S., Improved element stresses for node and element patches using superconvergent patch recovery, Commun. Numer. Methods. Eng., 11, 7, 619-627 (1995) · Zbl 0830.73068
[27] Wiberg, N.-E., Superconvergent patch recovery—A key to quality assessed fe solutions, Adv. Eng. Softw., 28, 2, 85-95 (1997)
[28] Newham, E.; Kague, E.; Aggleton, J.; Fernee, C.; Brown, K.; Hammond, C., Finite element and deformation analyses predict pattern of bone failure in loaded zebrafish spines, J. R. Soc. Interface, 16, 160, Article 20190430 pp. (2019)
[29] Zauel, R.; Yeni, Y.; Bay, B.; Dong, X.; Fyhrie, D., Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements (2006)
[30] Skalak, R.; Tozeren, A.; Zarda, P.; Chien, S., Strain energy function of red blood cell membranes, Biophys. J., 13, 3, 245-264 (1973)
[31] Khan, D.; Plopski, A.; Fujimoto, Y.; Kanbara, M.; Jabeen, G.; Zhang, Y.; Zhang, X.; Kato, H., Surface remeshing: A systematic literature review of methods and research directions, IEEE Trans. Vis. Comput. Graphics (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.