×

Fixed-distance multipoint formulas for the scattering amplitude from phaseless measurements. (English) Zbl 1481.35405

MSC:

35R30 Inverse problems for PDEs
35P25 Scattering theory for PDEs
35J10 Schrödinger operator, Schrödinger equation
35J25 Boundary value problems for second-order elliptic equations
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory

Citations:

Zbl 1330.35277
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agaltsov, A. D.; Hohage, T.; Novikov, R. G., An iterative approach to monochromatic phaseless inverse scattering, Inverse Problems, 35, 24001 (2019) · Zbl 07000901
[2] Aktosun, T.; Sacks, P. E., Inverse problem on the line without phase information, Inverse Problems, 14, 211-224 (1998) · Zbl 0902.34011
[3] Atkinson, F. V., On Sommerfeld’s ‘radiation condition’, London, Edinburgh Dublin Phil. Mag. J. Sci., 40, 645-651 (1949) · Zbl 0033.03504
[4] Barnett, A. H.; Epstein, C. L.; Greengard, L. F.; Magland, J. F., Geometry of the phase retrieval problem, Inverse Problems, 36 (2020) · Zbl 1451.49037
[5] Berezin, F. A.; Shubin, M. A., The Schrödinger Equation, Mathematics and its Applications, vol 66 (1991), Dordrecht: Kluwer, Dordrecht · Zbl 0749.35001
[6] Born, M., Quantenmechanik der Stossvorgange, Z. Phys., 38, 803-827 (1926) · JFM 52.0973.04
[7] Burov, V. A.; Rumyantseva, O. D., Inverse Wave Problems of Acoustic Tomography: Part 2. Inverse Problems of Acoustic scattering (2020), Moscow: Lenand, Moscow
[8] Chadan, K.; Sabatier, P. C., Inverse Problems in Quantum Scattering Theory (1989), Berlin: Springer, Berlin · Zbl 0681.35088
[9] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (2019), Berlin: Springer, Berlin · Zbl 1425.35001
[10] Crocco, L.; D’Urso, M.; Isernia, T., Inverse scattering from phaseless measurements of the total field on a closed curve, J. Opt. Soc. Am. A, 21, 622-631 (2004)
[11] Devaney, A. J., Structure determination from intensity measurements in scattering experiments, Phys. Rev. Lett., 62, 2385-2388 (1989)
[12] Faddeev, L. D.; Merkuriev, S. P., Quantum Scattering Theory for Multi-Particle Systems (1993), Dordrecht: Kluwer, Dordrecht · Zbl 0797.47005
[13] Fanelli, D.; Öktem, O., Electron tomography: a short overview with, Inverse Problems, 24 (2008) · Zbl 1137.78306
[14] Jesacher, A.; Harm, W.; Bernet, S.; Ritsch-Marte, M., Quantitative single-shot imaging of complex objects using phase retrieval with a designed periphery, Opt. Express, 20, 5470-5480 (2012)
[15] Ivanyshyn, O.; Kress, R.; Kress, R., Identification of sound-soft 3D obstacles from phaseless data, Inverse Problems Imaging, 4, 131-149 (2010) · Zbl 1220.35194
[16] Jonas, P.; Louis, A. K., Phase contrast tomography using holographic measurements, Inverse Problems, 20, 75-102 (2004) · Zbl 1047.65096
[17] Hohage, T.; Novikov, R. G., Inverse wave propagation problems without phase information, Inverse Problems, 35 (2019) · Zbl 1416.00026
[18] Klibanov, M. V., Phaseless inverse scattering problems in three dimensions, SIAM J. Appl. Math., 74, 392-410 (2014) · Zbl 1293.35188
[19] Klibanov, M. V.; Koshev, N. A.; Nguyen, D-L; Nguyen, L. H.; Brettin, A.; Astratov, V. N., A numerical method to solve a phaseless coefficient inverse problem from a single measurement of experimental data, SIAM J. Imaging Sci., 11, 2339-2367 (2018) · Zbl 1419.35247
[20] Klibanov, M. V.; Romanov, V. G., Reconstruction procedures for two inverse scattering problems without the phase information, SIAM J. Appl. Math., 76, 178-196 (2016) · Zbl 1331.35388
[21] Klibanov, M. V.; Sacks, P. E.; Tikhonravov, A. V., The phase retrieval problem, Inverse Problems, 11, 1-28 (1995) · Zbl 0821.35150
[22] Maleki, M. H.; Devaney, A. J.; Schatzberg, A., Tomographic reconstruction from optical scattered intensities, J. Opt. Soc. Am. A, 9, 1356-1363 (1992)
[23] Simon Maretzke, S., A uniqueness result for propagation-based phase contrast imaging from a single measurement, Inverse Problems, 31 (2015) · Zbl 1318.32004
[24] Maretzke, S.; Hohage, T., Stability estimates for linearized near-field phase retrieval in x-ray phase contrast imaging, SIAM J. Appl. Math., 77, 384-408 (2017) · Zbl 1358.78025
[25] Melrose, R. B., Geometric Scattering Theory (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0849.58071
[26] Novikov, R. G., Formulas for phase recovering from phaseless scattering data at fixed frequency, Bull. Sci. Math., 139, 923-936 (2015) · Zbl 1330.35277
[27] Novikov, R. G., Phaseless inverse scattering in the one-dimensional case, Eurasian J. Math. Comput. Appl., 3, 63-69 (2015)
[28] Novikov, R. G., Inverse scattering without phase information (20142015) · Zbl 1352.81056
[29] Novikov, R. G., Multipoint formulas for phase recovering from phaseless scattering data, J. Geom. Anal., 31, 1965-1991 (2021) · Zbl 1473.35139
[30] Novikov, R. G.; Cerejeiras, P.; Reissig, M., Multidimensional Inverse Scattering for the Schrödinger Equation (2019), Aveiro, Portugal: ISAAC, Aveiro, Portugal
[31] Novikov, R. G., Multipoint formulas for scattered far field in multidimensions, Inverse Problems, 36 (2020) · Zbl 1467.35110
[32] Novikov, R. G., Multipoint formulas for inverse scattering at high energies, Russian Math. Surv., 76, 723-725 (2021)
[33] Novikov, R. G.; Sivkin, V. N.; Sivkin, V. N., Error estimates for phase recovering from phaseless scattering data, Eurasian J. Math. Comput. Appl., 8, 44-61 (2020)
[34] Novikov, R. G.; Sivkin, V. N., Phaseless inverse scattering with background information, Inverse Problems, 37 (2021) · Zbl 1473.35140
[35] Palamodov, V., A fast method of reconstruction for x-ray phase contrast imaging with arbitrary Fresnel number (2018)
[36] Romanov, V. G., Phaseless inverse problems that use wave interference, Sib. Math. J., 59, 494-504 (2018) · Zbl 1400.35233
[37] Romanov, V. G., Phaseless inverse problems for Schrödinger, Helmholtz, and Maxwell equations, Comput. Math. Math. Phys., 60, 1045-1062 (2020) · Zbl 1450.81059
[38] Romanov, V. G., A phaseless inverse problem for electrodynamic equations in the dispersible medium, Appl. Anal. (2020)
[39] Wilcox, C. H., A generalization of theorems of Rellich and Atkinson, Proc. Am. Math. Soc., 7, 271-276 (1956) · Zbl 0074.08102
[40] Wolf, E., Three-dimensional structure determination of semi-transparent objects from holographic data, Opt. Commun., 1, 153-156 (1969)
[41] Wolf, E., Determination of the amplitude and the phase of scattered fields by holography, J. Opt. Soc. Am., 60, 18-20 (1970)
[42] Xu, X.; Zhang, B.; Zhang, H., Uniqueness in inverse electromagnetic scattering problem with phaseless far-field data at a fixed frequency, IMA J. Appl. Math., 85, 823-839 (2020) · Zbl 1465.78004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.