×

Determination of a spatial load in a damped Kirchhoff-Love plate equation from final time measured data. (English) Zbl 1481.35392

MSC:

35R30 Inverse problems for PDEs
35L35 Initial-boundary value problems for higher-order hyperbolic equations
74K20 Plates
74H75 Inverse problems in dynamical solid mechanics

Software:

DistMesh
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alves, C.; Silvestre, A. L.; Takahashi, T.; Tucsnak, M., Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation, SIAM J. Control Optim., 48, 1632-1659 (2009) · Zbl 1282.93059
[2] Anjuna, D.; Hasanov, A.; Sakthivel, K.; Sebu, C., On unique determination of an unknown spatial load in damped Euler-Bernoulli beam equation from final time output, J. Inverse Ill-Posed Problems (2021)
[3] Van Bockstal, K., Identification of an unknown spatial load distribution in a vibrating beam or plate from the final state, J. Inverse Ill-Posed Problems, 27, 623-642 (2019) · Zbl 1425.74269
[4] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2010), Berlin: Springer, Berlin
[5] Chang, J-D; Guo, B-Z, Identification of variable spacial coefficients for a beam equation from boundary measurements, Automatica, 43, 732-737 (2007) · Zbl 1131.93016
[6] Clough, R. W.; Tocher, J. L., Finite element stiffness matrices for analysis of plates in bending, 515-545 (1965)
[7] Cheng, J.; Xu, H., Inner mass impact damper for attenuating structure vibration, Int. J. Solids Struct., 43, 5355-5369 (2006) · Zbl 1120.74527
[8] Evans, L. C., Partial Differential Equations (2010), Providence, RI: American Mathematical Society, Providence, RI
[9] Frýba, L., Dynamics of Railway Bridges (1996), London: Thomas Telford, London · Zbl 0452.73081
[10] Frýba, L., Vibrations of the Solids and Structures under Moving Loads (1999), London: Thomas Telford, London
[11] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1998), Berlin: Springer, Berlin · Zbl 0691.35001
[12] Gladwell, G. M L., The inverse problem for the Euler-Bernoulli beam, Proc. R. Soc. A, 407, 199-218 (1986) · Zbl 0638.35080
[13] Gladwell, G. M L., Inverse Problems in Vibration (2004), Dordrecht: Kluwer, Dordrecht · Zbl 0646.73013
[14] Gu, Z-j; Tan, Y-j, Fundamental solution method for inverse source problem of plate equation, Appl. Math. Mech., 33, 1513-1532 (2012) · Zbl 1390.74106
[15] Hadamard, J., La théorie des équations aux dérivées partielles (1964), Peking: Éditions scientifiques, Peking · Zbl 0131.09001
[16] Hasanov, A., Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: weak solution approach, J. Math. Anal. Appl., 330, 766-779 (2007) · Zbl 1120.35083
[17] Hasanov, A., Simultaneous determination of the source terms in a linear hyperbolic problem from the final overdetermination: weak solution approach, IMA J. Appl. Math., 74, 1-19 (2007) · Zbl 1162.35404
[18] Hasanov, A., Identification of an unknown source term in a vibrating cantilevered beam from final over determination, Inverse Problems, 25 (2009) · Zbl 1180.35562
[19] Hasanov, A.; Mukanova, B., Relationship between representation formulas for unique regularized solutions of inverse source problems with final over determination and singular value decomposition of input-output operators, IMA J. Appl. Math., 80, 676-696 (2015) · Zbl 1333.35341
[20] Hasanov, A.; Baysal, O., Identification of unknown temporal and spatial load distributions in a vibrating Euler-Bernoulli beam from Dirichlet boundary measured data, Automatica, 71, 106-117 (2016) · Zbl 1343.93026
[21] Hasanov, A.; Kawano, A., Identification of unknown spatial load distributions in a vibrating Euler-Bernoulli beam from limited measured data, Inverse Problems, 32 (2016) · Zbl 1382.65293
[22] Hasanov, A.; Romanov, V., Introduction to Inverse Problems for Differential Equations (2021), Berlin: Springer, Berlin · Zbl 1476.35002
[23] Hasanov, A.; Romanov, V.; Baysal, O., Unique recovery of unknown spatial load in damped Euler-Bernoulli beam equation from final time measured output, Inverse Problems, 37 (2021) · Zbl 1467.74036
[24] Hasanov, A.; Baysal, O.; Itou, H., Identification of an unknown shear force in a cantilever Euler-Bernoulli beam from measured boundary bending moment, J. Inverse Ill-Posed Problems, 27, 859-876 (2019) · Zbl 1430.74148
[25] Hasanov, A.; Baysal, O.; Sebu, C., Identification of an unknown shear force in the Euler-Bernoulli cantilever beam from measured boundary deflection, Inverse Problems, 35 (2019) · Zbl 1433.35391
[26] Ikehata, M., An inverse problem for the plate in the Love-Kirchhoff theory, SIAM J. Appl. Math., 53, 942-970 (1993) · Zbl 0841.35126
[27] Ivanov, V. K., On ill-posed problems, Math. USSR Sbornik, 61, 211-223 (1963)
[28] Keung, Y. L.; Zou, J., Numerical identifications of parameters in parabolic systems, Inverse Problems, 14, 83-100 (1998) · Zbl 0894.35127
[29] Lesnic, D.; Elliott, L.; Ingham, D. B., Analysis of coefficient identification problems associated to the inverse Euler-Bernoulli beam theory, IMA J. Appl. Math., 62, 101-116 (1999) · Zbl 0954.74025
[30] Love, A. E., On the small force vibrations and deformations of elastic shells, Phil. Trans. R. Soc. A, 17, 491-549 (1888) · JFM 20.1075.01
[31] Marinov, T. T.; Marinova, R. S., An inverse problem for estimation of bending stiffness in Kirchhoff-Love plates, Comput. Math. Appl., 65, 512-519 (2013) · Zbl 1319.74010
[32] Mayer, A., A simplified calculation of reduced HCT-basis functions in a finite element context, Comput. Methods Appl. Math., 12, 486-499 (2012) · Zbl 1284.65170
[33] Persson, P-O; Strang, G., A simple mesh generator in MATLAB, SIAM Rev., 46, 329-345 (2004) · Zbl 1061.65134
[34] Rao, S. S., Vibration of Continuous Systems (2007), New York: Wiley, New York
[35] Repetto, C. E.; Roatta, A.; Welti, R. J., Forced vibrations of a cantilever beam, Eur. J. Phys., 33, 1187-1195 (2012) · Zbl 1262.74019
[36] Sakthivel, K.; Gnanavel, S.; Hasanov, A.; George, R. K., Identification of an unknown coefficient in KdV equation from final time measurement, J. Inverse Ill-Posed Problems, 24, 469-487 (2016) · Zbl 1352.35122
[37] Sakthivel, K.; Hasanov, A., An inverse problem for the KdV equation with Neumann boundary measured data, J. Inverse Ill-Posed Problems, 26, 133-151 (2018) · Zbl 1383.35191
[38] Timoshenko, P. S.; Woinowsky-Krieger, S., Theory of Plates and Shells (1959), New York: McGraw-Hill, New York · Zbl 0114.40801
[39] Timoshenko, P. S.; Gere, J. M., Theory of Elastic Stability (1961), New York: McGraw-Hill, New York
[40] Tikhonov, A.; Arsenin, V., Solutions of Ill-Posed Problems (1979), Beijing: Geology Press, Beijing · Zbl 0499.65030
[41] Vinod, K. G.; Gopalakrishnan, S.; Ganguli, R., Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements, Int. J. Solids Struct., 44, 5875-5893 (2007) · Zbl 1126.74019
[42] Zeidler, E., Applied Functional Analysis: Main Principles and Their Applications (1995), Berlin: Springer, Berlin · Zbl 0834.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.