×

A review on buckling and postbuckling of thin elastic beams. (English) Zbl 1508.74016

Summary: This paper provides a review of models and solutions for the buckling and postbuckling of beams available from the 50s of the last century to date. Beams with axially unrestrained (movable) ends and restrained (immovable) ends are covered. In each class, the formulation of the nonlinear buckling problem for the buckling loads and the postbuckling states is discussed and the underlying assumptions are highlighted. For relatively large-amplitude buckling of beams with movable ends, approximate analytical solutions up to the third order are presented and compared with the exact solutions expressed in terms of elliptic integrals. For beams with immovable ends, buckling involves midplane stretching that makes the nonlinear buckling problem takes the same form of the standard eigenvalue problem and, hence, exact solutions are affordable. This review combines the research outcomes on buckled beams from two scientific viewpoints: the structural dynamics and the nonlinear vibration viewpoints, respectively. Moreover, it presents in one place the formulation and the exact solutions for the buckling of beams to serve as an on-demand resource for researchers concerned with the buckling and postbuckling of beams.

MSC:

74G60 Bifurcation and buckling
74H55 Stability of dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Addessi, D.; Lacarbonara, W.; Paolone, A., On the linear normal modes of planar prestressed elastica arches, J. Sound Vib., 284, 1075-1097 (2005)
[2] Addessi, D.; Lacarbonara, W.; Paolone, A., Free in-plane vibrations of highly pre-stressed curved beams, Acta Mech., 180, 133-156 (2005) · Zbl 1138.74339
[3] Alcheikh, N.; Ben; Mbarek, S.; Ouakad, H. M.; Younis, M. I., A highly sensitive and wide-range resonant magnetic micro-sensor based on a buckled micro-beam, Sensor Actuator Phys., 328, 1, 112768 (2021)
[4] Antman, S., The Theory of Rods, Linear Theories of Elasticity and Thermoelasticity, 641-703 (1972), Springer Berlin Heidelberg
[5] Antman, S.; Rosenfeld, G., Global behavior of buckled states of nonlinearly elastic rods, SIAM Rev., 20, 3, 513-566 (1978) · Zbl 0395.73039
[6] Arnold, M. A.; van der Heijden, W. T., Koiter’s Elastic Stability of Solids and Structures (2009), Cambridge University Press · Zbl 1163.74001
[7] Bažant, Z., A correlation study of formulations of incremental deformation and stability of continuous bodies, J. Appl. Mech., 38, 197, 9-19 (1971) · Zbl 0268.73001
[8] Bažant, Z.; Cedolin, L., Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories (1991), Oxford University Press: Oxford University Press New York · Zbl 0744.73001
[9] Bazant, Z. P.; Cedolin, Z. P., Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories (2010), World Scientific Publishing · Zbl 0744.73001
[10] Bouna, H. S.; Nbendjo, B. R.N.; Woafo, P., Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a multi-span continuous beam bridge under pier base vibrating excitation, Nonlinear Dynam., 100, 1125-1141 (2020)
[11] Budiansky, B., Theory of buckling and post-buckling behavior of elastic structures, Adv. Appl. Mech., 14, 1-65 (1974)
[12] Burgreen, D., Free vibrations of a pin-ended column with constant distance between pin ends, J. Appl. Mech., 18, 135-139 (1951)
[13] Cai, K.; Gao, D. Y.; Qin, Q. H., Postbuckling solutions of hyper-elastic beam by canonical dual finite element method, Math. Mech. Solid, 19, 6, 659-671 (2014) · Zbl 1298.74085
[14] Coaquira, J. C.; Cardoso, D. C.T.; Goncalves, P. B.; Orlando, D., Parametric instability and nonlinear oscillations of an FRP channel section column under axial load, Nonlinear Dynam., 103, 3557-3580 (2021)
[15] Daqaq, M. F.; Masana, R.; Erturk, A.; Quinn, D. D., On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion, Appl. Mech. Rev., 66, 4, Article 040801 pp. (2014)
[16] Derakhshani, M.; Berfield, T. A.; Murphy, K. D., A component coupling approach to dynamic analysis of a buckled, bistable vibration energy harvester structure, Nonlinear Dynam., 96, 1429-1446 (2019)
[17] Eisley, J. G., Large amplitude vibration of buckled beams and rectangular plates, AIAA J., 2, 12, 2207-2209 (1964)
[18] Eisley, J. G.; Bennett, J. A., Stability of large amplitude forced motion of a simply supported beam, Int. J. Non Lin. Mech., 5, 645-657 (1970) · Zbl 0228.73060
[19] Eisley, J. G.; Waas, A. M., Analysis of Structures: an Introduction Including Numerical Methods (2011), John Wiley & Sons, Ltd · Zbl 1232.74001
[20] Emam, S., A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams (2002), Virginia Polytechnic Institute and State University: Virginia Polytechnic Institute and State University Blacksburg, VA, USA, PhD dissertation
[21] Emam, S., A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams, Compos. Struct., 90, 2, 247-253 (2009)
[22] Emam, S. A., Analysis of shear-deformable composite beams in postbuckling, Compos. Struct., 94, 24-30 (2011)
[23] Emam, S. A., Approximate analytical solutions for the nonlinear free vibrations of composite beams in buckling, Compos. Struct., 100, 186-194 (2013)
[24] Emam, S. A., A general nonlocal nonlinear model for buckling of nanobeams, Appl. Math. Model., 37, 6929-6939 (2013) · Zbl 1438.74098
[25] Emam, S. A.; Abdalla, M., Subharmonic parametric resonance of simply supported buckled beams, Nonlinear Dynam., 79, 1443-1456 (2015)
[26] Emam, S. A.; Eltaher, M. A., Buckling and postbuckling of composite beams in hygrothermal environments, Compos. Struct., 152, 665-675 (2016)
[27] Emam, S.; Lacarbonara, W., Buckling and postbuckling of extensible, shear-deformable beams: some exact solutions and new insights, Int. J. Non Lin. Mech., 129, 103667 (2021)
[28] Emam, S. A.; Nayfeh, A. H., Nonlinear responses of buckled beams to subharmonic-resonance excitations, Nonlinear Dynam., 35, 105-122 (2004) · Zbl 1068.74555
[29] Emam, S. A.; Nayfeh, A. H., On the nonlinear dynamics of a buckled beam subjected to a primary- resonance excitation, Nonlinear Dynam., 35, 1-17 (2004) · Zbl 1041.74031
[30] Emam, S. A.; Nayfeh, A. H., Postbuckling and free vibrations of composite beams, Compos. Struct., 88, 636-642 (2009)
[31] Emam, S. A.; Nayfeh, A. H., Nonlinear response of buckled beams to 1:1 and 3:1 internal resonances, Int. J. Non Lin. Mech., 52, 12-25 (2013)
[32] Fang, W.; Wickert, J. A., Post buckling of micromachined beams, J. of Micromechanics and microenginering, 4, 116-122 (1994)
[33] Filipich, C. P.; Rosales, M. B., A further study on the postbuckling of extensible elastic rods, Int. J. Non Lin. Mech., 35, 6, 997-1022 (2000) · Zbl 1068.74544
[34] Goto, Y.; Yamashita, T.; Matsuura, S., Elliptic integral solutions for extensional elastica with constant initial curvature, Struct. Engng./Earthquake Engng., 4, 2, 299-309 (1987)
[35] Goto, Y.; Yoshimitsu, T.; Obata, M., Elliptic integral solutions of plane elastica with axial and shear deformations, Int. J. Solid Struct., 26, 4, 375-390 (1990) · Zbl 0706.73039
[36] Gunda, J. B.; Rao, G. V., Post-buckling analysis of composite beams: a simple intuitive formulation, Sadhana, 38, 447-459 (2013), Emam, S.A., 2009. A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams. Composite Structures, 90, 246-253 · Zbl 1322.74022
[37] Harne, R. L.; Wang, K. W., A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct., 22, Article 023001 pp. (2013)
[38] Huang, J. L.; Xiao, L. J.; Zhu, W. D.; A F., Investigation of quasi-periodic response of a buckled beam under harmonic base excitation with an “unexplained” sideband structure, Nonlinear Dynam., 100, 2103-2119 (2020) · Zbl 1516.74041
[39] Huguet, T.; Lallart, M.; Badel, A., Bistable vibration energy harvester and SECE circuit: exploring their mutual influence, Nonlinear Dynam., 97, 485-501 (2019)
[40] Humer, A., Elliptic integral solution of the extensible elastica with a variable length under a concentrated force, Acta Mech., 222, 3-4, 209-223 (2011) · Zbl 1398.74191
[41] Humer, A., Exact solutions for the buckling and postbuckling of shear-deformable beams, Acta Mech., 224, 1493-1525 (2013) · Zbl 1398.74113
[42] Humer, A.; Irschik, H., Large deformation and stability of an extensible elastica with an unknown length, Int. J. Solid Struct., 48, 9, 1301-1310 (2011) · Zbl 1236.74021
[43] Humer, A.; Irschik, H., Large deformation and stability of an extensible elastica with an unknown length, Int. J. Solid Struct., 48, 9, 1301-1310 (2011) · Zbl 1236.74021
[44] Hutchinson, J. W.; Koiter, W. T., Postbuckling theory, Appl. Mech. Rev., 23, 12, 1353-1366 (1970)
[45] In-Soo, Son; Uchiyama, Y.; Lacarbonara, W.; Yabuno, H., Simply supported elastic beams under parametric excitation, Nonlinear Dynam., 53, 129-138 (2008) · Zbl 1170.74339
[46] Iurasov, V.; Mattei, P. O., Bistable nonlinear damper based on a buckled beam configuration, Nonlinear Dynam., 99, 1801-1822 (2019)
[47] Jones, R. M., Buckling of Bars, Plates and Shells (2006), Bull Ridge Publishing
[48] Lacarbonara, W., Buckling and post-buckling of non-uniform non-linearly elastic rods, Int. J. Mech. Sci., 50, 1316-1325 (2008) · Zbl 1264.74062
[49] Lacarbonara, W., Nonlinear Structural Mechanics. Theory, Dynamical Phenomena, and Modelling (2013), Springer Science Business Media: Springer Science Business Media New York · Zbl 1263.74001
[50] Lacarbonara, W.; Nayfeh, A. H.; Kreider, W., Experimental validation of reduction methods for nonlinear vibrations of distributed-parameter systems: analysis of a buckled beam, Nonlinear Dynam., 17, 95-117 (1998) · Zbl 0968.74503
[51] Lacarbonara, W.; Paolone, A.; Yabuno, H., Modeling of planar nonshallow prestressed beams towards asymptotic solutions, Mech. Res. Commun., 31, 301-310 (2004) · Zbl 1079.74568
[52] Lagace, P. A., Other Issues in Buckling/Structural Instability. Lecture Notes of the 16.20 Structural Mechanics Course of MIT (2001)
[53] Liu, C. R.; Yu, K. P., Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness, Nonlinear Dynam., 100, 2141-2165 (2020)
[54] Liu, C. R.; Yu, K. P., Superharmonic resonance of the quasi-zero-stiffness vibration isolator and its effect on the isolation performance, Nonlinear Dynam., 100, 95-117 (2020)
[55] Lu, L.; Wang, S.; Li, M.; Guo, X. M., Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets, Compos. Struct., 272, 114231 (2021)
[56] Lu, L.; She, G. L.; Guo, X. M., Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection, Int. J. Mech. Sci., 199, 106428 (2021)
[57] Magnusson, A.; Ristinmaa, M.; Ljung, C., Behaviour of the extensible elastica solution, Int. J. Solid Struct., 38, 46-47, 8441-8457 (2001) · Zbl 1024.74024
[58] Mahaffey, P. B., Bending, vibration and buckling response of conventional and modified Euler-Bernoulli and Timoshenko beam theories accounting for the von Karman geometric nonlinearity (2013), Texas A&M University, 2013
[59] Mazzilli, C., Buckling and Postbuckling of extensible rods revisited: a multiple-scale solution, Int. J. Non Lin. Mech., 44, 2, 200-208 (2009) · Zbl 1203.74048
[60] McDonald, P. H., Nonlinear dynamic coupling in abeam vibration, J. Appl. Mech., 22, 573-578 (1955) · Zbl 0066.19301
[61] McDonald, P. H., Nonlinear motion of beam, Nonlinear Dynam., 2, 187-198 (1991)
[62] Mikata, Y., Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube, Acta Mech., 190, 1, 133-150 (2007) · Zbl 1117.74032
[63] Nayfeh, A. H.; Emam, S. A., Exact solutions and stability of the postbuckling configurations of beams, Nonlinear Dynam., 54, 395-408 (2008) · Zbl 1173.74019
[64] Nayfeh, A. H.; Lacarbonara, W., On the discretization of spatially continuous systems with quadratic and cubic nonlinearities, JSME International Journal, 41, 510-531 (1998)
[65] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1979), Wiley: Wiley New York · Zbl 0418.70001
[66] Nayfeh, A. H.; Kreider, W.; Anderson, T. J., Investigation of natural frequencies and mode shapes of buckled beams, AIAA J., 33, 6, 1121-1126 (1995) · Zbl 0845.73041
[67] Nayfeh, A. H.; Lacarbonara, W.; Chin, C.-M., Nonlinear normal modes of buckled beams: three-to-one and one-to-one internal resonances, Nonlinear Dynam., 18, 253-273 (1999) · Zbl 0960.74032
[68] Plaut, R. H.; Sidury, J. E.; Virgin, L. N., Analysis of buckled and pre-bent fixed-end columns used as vibration isolators, J. Sound Vib., 283, 3-5, 1216-1228 (2005)
[69] Rega, G.; Settimi, V.; Lenci, S., Chaos in one-dimensional structural mechanics, Nonlinear Dynam., 102, 785-834 (2020)
[70] Reissner, E., On one-dimensional finite-strain beam theory: the plane problem, Z. Angew. Math. Phys., 23, 5, 795-804 (1972) · Zbl 0248.73022
[71] Reissner, E., On one-dimensional large-displacement finite-strain beam theory, Stud. Appl. Mech., L11, 2 (1973) · Zbl 0267.73032
[72] Rivello, R. M., Theory and Analysis of Flight Structures (1969), McGraw-Hill
[73] Sewell, M. J., A general theory of equilibrium paths through critical points I, Proceedings of the Royal Society A, 306, 1485, 201-223 (1968)
[74] Sewell, M. J., A general theory of equilibrium paths through critical points II, Proceedings of the Royal Society A, 306, 1485, 225-238 (1968)
[75] She, G. L.; Liu, H. B.; Karami, B., Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets, Thin-Walled Struct., 160, 107407 (2021)
[76] Shen, Hui-Shen, A novel technique for nonlinear analysis of beams on two-parameter elastic foundations, Int. J. Struct. Stabil. Dynam., 11, 6, 999-1014 (2011) · Zbl 1245.74036
[77] Simitses, G. J.; Hodges, D. H., Fundamentals of Structural Stability (2006), Elsevier Corp · Zbl 1112.74001
[78] Simitses, G.; Hodges, D., Fundamentals of Structural Stability (2006), Butterworth-Heinemann: Butterworth-Heinemann Oxford · Zbl 1112.74001
[79] Sinir, B. G.; Ozhan, B. B.; Reddy, J. N., Buckling configurations and dynamic response of buckled Euler-Bernoulli beams with non-classical supports, Lat. Am. J. Solid. Struct., 11, 2516-2536 (2014)
[80] Thompson, J. M.T.; Hunt, G. W., A General Theory of Elastic Stability (1973), Wiley: Wiley New York · Zbl 0351.73066
[81] Thomson, J. M.T.; Hunt, G. W., Elastic Instability Phenomena (1984), John Wiley & Sons · Zbl 0636.73034
[82] Timoshenko, S.; Gere, J., Theory of Elastic Stability (1961), McGraw-Hill: McGraw-Hill New York
[83] Torteman, B.; Kessler, Y.; Liberzon, A.; Krylov, S., Micro-beam resonator parametrically excited by electro-thermal Joule’s heating and its use as a flow sensor, Nonlinear Dynam., 98, 3051-3065 (2019)
[84] Vaz, M.; Silva, D., Postbuckling analysis of slender elastic rods subjected to terminal forces, Int. J. Non Lin. Mech., 38, 4, 483-492 (2003) · Zbl 1346.74069
[85] Virgin, L. N.; Davis, R. B., Vibration isolation using buckled struts, J. Sound Vib., 260, 5, 965-973 (2003)
[86] Virgin, L. N.; Sidury, J. E.; Plaut, R. H., Vibration isolation using extreme geometric nonlinearity, J. Sound Vib., 315, 3, 721-731 (2008)
[87] Wagg, D.; Virgin, L. N., Exploiting Nonlinear Behavior in Structural Dynamics. CISM Center for Mechanical Sciences, vol. 536 (2012), Springer
[88] Wang, C. Y., A critical review of the heavy elastica, Int. J. Mech. Sci., 28, 8, 549-559 (1986)
[89] Wang, C., Postbuckling of a clamped-simply supported elastica, Int. J. Non Lin. Mech., 32, 6, 1115-1122 (1997) · Zbl 0891.73034
[90] Woodard, S. E.; Housner, J. M., Nonlinear behavior of a passive zero-spring-rate suspension system, J. Guid. Control Dynam., 14, 84-89 (1991)
[91] Yamaki, N.; Mori, A., Non-linear vibrations of a clamped beam with initial deflection and initial axial displacement, Part I: Theory, J. Sound Vib., 71, 3, 333-346 (1980) · Zbl 0441.73080
[92] Yamaki, N.; Mori, A., Non-linear vibrations of a clamped beam with initial deflection and initial axial displacement, Part II: Experiment, J. Sound Vib., 71, 3, 347-360 (1980) · Zbl 0441.73081
[93] Zhang, Y. Y.; Wang, X. Y.; Zhang, X.; Shen, H. M.; She, G. L., On snap-buckling of FG-CNTR curved nanobeams considering surface effects, Steel Compos. Struct., 38, 3, 293-304 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.