×

Three-level order-adaptive weighted essentially non-oscillatory schemes. (English) Zbl 07455171

Summary: Classical fifth-order weighted essentially non-oscillatory (WENO) schemes are based on reconstructions from three consecutive second-order polynomials. They give a third-order accurate scheme when two consecutive polynomials are smooth and one is non-smooth. This situation means losing one order of accuracy if compared with a fourth-order scheme. In classical WENO schemes, weighting functions that determine the weights for the polynomials and that eventually define the reconstruction are directly related to a smoothness indicator. This property may lead to a non-zero residual of a very small value in the Taylor expansion. To handle this situation a weighting procedure that does not directly rely on the smoothness indicator is presented. Once the smooth polynomials are determined, the smoothness indicator has no role in the further steps, which are taken care of by a new switch function. Contrary to other approaches this switch function does not involve any conditional statements. A tuning parameter is also included so that the resulting order-adaptive property can be adjusted to specific requirements. The performance of the resulting schemes for cell-average and point-value reconstructions is studied. In addition, the effect of the choice of numerical flux or Riemann solver on these reconstruction strategies is analysed. Numerical tests for the Euler equations of gas dynamics in one and two space dimensions are presented. Improvements in resolution and the stability are found when compared with the conventional WENO techniques.

MSC:

65-XX Numerical analysis
35F61 Initial-boundary value problems for systems of nonlinear first-order PDEs
35L50 Initial-boundary value problems for first-order hyperbolic systems
35Q31 Euler equations
76N15 Gas dynamics (general theory)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76J20 Supersonic flows
76Q05 Hydro- and aero-acoustics

Software:

HE-E1GODF
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Harten, A., High resolution schemes for hyperbolic conservation laws, J Comput Phys, 49, 3, 357-393 (1983) · Zbl 0565.65050
[2] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997). Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997), Lecture Notes in Math., vol. 1697 (1998), Springer: Springer Berlin), 325-432 · Zbl 0927.65111
[3] Zhang, Y.-T.; Shu, C.-W., ENO and WENO schemes, (Handbook of numerical methods for hyperbolic problems. Handbook of numerical methods for hyperbolic problems, Handb. Numer. Anal., vol. 17 (2016), Elsevier/North-Holland: Elsevier/North-Holland Amsterdam), 103-122
[4] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes, Acta Numer, 29, 701-762 (2020)
[5] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J Comput Phys, 115, 1, 200-212 (1994) · Zbl 0811.65076
[6] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J Comput Phys, 126, 1, 202-228 (1996) · Zbl 0877.65065
[7] Henrick, A. K.; Aslam, T. D.; Powers, J. M., Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, J Comput Phys, 207, 2, 542-567 (2005) · Zbl 1072.65114
[8] Kundu, A.; De, S., Navier-Stokes simulation of shock-heavy bubble interaction: comparison of upwind and WENO schemes, Comput Fluids, 157, 131-145 (2017) · Zbl 1390.76587
[9] Rathan, S.; Raju, G. N., An improved non-linear weights for seventh-order weighted essentially non-oscillatory scheme, Comput Fluids, 156, 496-514 (2017) · Zbl 1390.65098
[10] Vevek, U. S.; Zang, B.; New, T. H., Adaptive mapping for high order WENO methods, J Comput Phys, 381, 162-188 (2019) · Zbl 1451.65123
[11] Baeza, A.; Bürger, R.; Mulet, P.; Zorío, D., Central WENO schemes through a global average weight, J Sci Comput, 78, 1, 499-530 (2019) · Zbl 1412.65065
[12] Baeza, A.; Bürger, R.; Mulet, P.; Zorío, D., An efficient third-order WENO scheme with unconditionally optimal accuracy, SIAM J Sci Comput, 42, 2, A1028-A1051 (2020) · Zbl 1434.65106
[13] Baeza, A.; Bürger, R.; Mulet, P.; Zorío, D., WENO reconstructions of unconditionally optimal high order, SIAM J Numer Anal, 57, 6, 2760-2784 (2019) · Zbl 1434.65105
[14] Peer, A. A.I.; Dauhoo, M. Z.; Bhuruth, M., A method for improving the performance of the WENO5 scheme near discontinuities, Appl Math Lett, 22, 11, 1730-1733 (2009) · Zbl 1177.65130
[15] Aràndiga, F.; Baeza, A.; Belda, A. M.; Mulet, P., Analysis of WENO schemes for full and global accuracy, SIAM J Numer Anal, 49, 2, 893-915 (2011) · Zbl 1233.65051
[16] Rathan, S.; Raju, G. N., Improved weighted ENO scheme based on parameters involved in nonlinear weights, Appl Math Comput, 331, 120-129 (2018) · Zbl 1427.65180
[17] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J Comput Phys, 227, 6, 3191-3211 (2008) · Zbl 1136.65076
[18] Taylor, E. M.; Wu, M.; Martín, M. P., Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence, J Comput Phys, 223, 1, 384-397 (2007) · Zbl 1165.76350
[19] Fu, L.; Hu, X. Y.; Adams, N. A., A family of high-order targeted ENO schemes for compressible-fluid simulations, J Comput Phys, 305, 333-359 (2016) · Zbl 1349.76462
[20] Serna, S.; Qian, J., Fifth-order weighted power-ENO schemes for Hamilton-Jacobi equations, J Sci Comput, 29, 1, 57-81 (2006) · Zbl 1149.70301
[21] Li, H.; Do, S.; Kang, M., A wavelet-based adaptive WENO algorithm for Euler equations, Comput Fluids, 123, 10-22 (2015) · Zbl 1390.65073
[22] Balsara, D. S.; Garain, S.; Shu, C.-W., An efficient class of WENO schemes with adaptive order, J Comput Phys, 326, 780-804 (2016) · Zbl 1422.65146
[23] Luo, H.; Baum, J. D.; Löhner, R., A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J Comput Phys, 225, 1, 686-713 (2007) · Zbl 1122.65089
[24] Fjordholm, U. S.; Ray, D., A sign preserving WENO reconstruction method, J Sci Comput, 68, 1, 42-63 (2016) · Zbl 1344.65079
[25] Avesani, D.; Dumbser, M.; Bellin, A., A new class of moving-least-squares WENO-SPH schemes, J Comput Phys, 270, 278-299 (2014) · Zbl 1349.76661
[26] Shi, J.; Hu, C.; Shu, C.-W., A technique of treating negative weights in WENO schemes, J Comput Phys, 175, 1, 108-127 (2002) · Zbl 0992.65094
[27] Salih, A.; Moulic, S. G., A level set formulation for the numerical simulation of impact of surge fronts, Sadhana, 31, 6, 697-707 (2006) · Zbl 1386.76117
[28] Wang, R.; Spiteri, R. J., Linear instability of the fifth-order WENO method, SIAM J Numer Anal, 45, 5, 1871-1901 (2007) · Zbl 1158.65065
[29] Appadu, A. R.; Peer, A. A.I., Optimized weighted essentially nonoscillatory third-order schemes for hyperbolic conservation laws, J Appl Math, Article 428681 pp. (2013), 12 · Zbl 1275.65047
[30] Weirs, V. G.; Candler, G. V., Optimization of weighted ENO schemes for DNS of compressible turbulence, Vol. 97, 177 (1997), UMSI Research Report/University of Minnesota (Minneapolis, MN). Supercomputer Institute
[31] Kumar, G.; Girimaji, S. S.; Kerimo, J., WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence, J Comput Phys, 234, 499-523 (2013)
[32] Hu, X. Y.; Wang, Q.; Adams, N. A., An adaptive central-upwind weighted essentially non-oscillatory scheme, J Comput Phys, 229, 23, 8952-8965 (2010) · Zbl 1204.65103
[33] Hill, D. J.; Pullin, D. I., Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks, J Comput Phys, 194, 2, 435-450 (2004) · Zbl 1100.76030
[34] Sun, Z.-S.; Ren, Y.-X.; Larricq, C.; Zhang, S.-Y.; Yang, Y.-C., A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence, J Comput Phys, 230, 12, 4616-4635 (2011) · Zbl 1416.76192
[35] Castonguay, P.; Williams, D. M.; Vincent, P. E.; Jameson, A., Energy stable flux reconstruction schemes for advection-diffusion problems, Comput Methods Appl Mech Engrg, 267, 400-417 (2013) · Zbl 1286.65119
[36] Fisher, T. C.; Carpenter, M. H.; Yamaleev, N. K.; Frankel, S. H., Boundary closures for fourth-order energy stable weighted essentially non-oscillatory finite-difference schemes, J Comput Phys, 230, 10, 3727-3752 (2011) · Zbl 1216.65104
[37] Biswas, B.; Dubey, R. K., Low dissipative entropy stable schemes using third order WENO and TVD reconstructions, Adv Comput Math, 44, 4, 1153-1181 (2018) · Zbl 1396.65139
[38] Dubey, R. K.; Biswas, B., Suitable diffusion for constructing non-oscillatory entropy stable schemes, J Comput Phys, 372, 912-930 (2018) · Zbl 1415.65211
[39] Zhu, J.; Qiu, J.; Shu, C.-W.; Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters. II. Unstructured meshes, J Comput Phys, 227, 9, 4330-4353 (2008) · Zbl 1157.65453
[40] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, J Comput Phys, 114, 1, 45-58 (1994) · Zbl 0822.65062
[41] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J Comput Phys, 221, 2, 693-723 (2007) · Zbl 1110.65077
[42] Rathan, S.; Gande, N. R.; Bhise, A. A., Simple smoothness indicator WENO-Z scheme for hyperbolic conservation laws, Appl Numer Math, 157, 255-275 (2020) · Zbl 1446.65076
[43] Bhise, A. A.; Naga Raju, G.; Samala, R.; Devakar, M., An efficient hybrid WENO scheme with a problem independent discontinuity locator, Internat J Numer Methods Fluids, 91, 1, 1-28 (2019)
[44] Kossaczká, T.; Ehrhardt, M.; Günther, M., Enhanced fifth order WENO shock-capturing schemes with deep learning, Results Appl Math, 12, Article 100201 pp. (2021)
[45] Ray, M. P.; Puranik, B. P.; Bhandarkar, U. V., Development and assessment of several high-resolution schemes for compressible Euler equations, Int J Comput Methods, 11, 1, Article 1350049 pp. (2014), 23pp · Zbl 1359.76210
[46] Peng, J.; Zhai, C.; Ni, G.; Yong, H.; Shen, Y., An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic Euler equations, Comput Fluids, 179, 34-51 (2019) · Zbl 1411.76106
[47] Peng, J.; Shen, Y., A novel weighting switch function for uniformly high-order hybrid shock-capturing schemes, Internat J Numer Methods Fluids, 83, 9, 681-703 (2017)
[48] Bürger, R.; Kozakevicius, A., Adaptive multiresolution WENO schemes for multi-species kinematic flow models, J Comput Phys, 224, 2, 1190-1222 (2007) · Zbl 1123.65305
[49] Bürger, R.; Donat, R.; Mulet, P.; Vega, C. A., On the implementation of WENO schemes for a class of polydisperse sedimentation models, J Comput Phys, 230, 6, 2322-2344 (2011) · Zbl 1391.76465
[50] Shen, Y.; Zha, G., Improvement of weighted essentially non-oscillatory schemes near discontinuities, Comput Fluids, 96, 1-9 (2014) · Zbl 1391.76492
[51] Kumar, R.; Chandrashekar, P., Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws, J Comput Phys, 375, 1059-1090 (2018) · Zbl 1416.76181
[52] van Lith, B. S.; ten Thije Boonkkamp, J. H.M.; Ijzerman, W. L., Embedded WENO: a design strategy to improve existing WENO schemes, J Comput Phys, 330, 529-549 (2017) · Zbl 1380.65191
[53] Liu, X.-D.; Osher, S., Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids, J Comput Phys, 142, 2, 304-330 (1998) · Zbl 0941.65082
[54] Ha, Y.; Kim, C. H.; Lee, Y. J.; Yoon, J., An improved weighted essentially non-oscillatory scheme with a new smoothness indicator, J Comput Phys, 232, 68-86 (2013) · Zbl 1291.65264
[55] Sedov, L. I., Similarity and dimensional methods in mechanics (1993), CRC Press
[56] Kemm, F., On the proper setup of the double Mach reflection as a test case for the resolution of gas dynamics codes, Comput Fluids, 132, 72-75 (2016) · Zbl 1390.76275
[57] Wang, B.-S.; Li, P.; Gao, Z.; Don, W. S., An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws, J Comput Phys, 374, 469-477 (2018) · Zbl 1416.76194
[58] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: A practical introduction (2013), Springer Science & Business Media
[59] Lomax, H.; Pulliam, T. H.; Zingg, D. W., Fundamentals of computational fluid dynamics (2013), Springer Science & Business Media · Zbl 0970.76002
[60] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J Comput Phys, 27, 1, 1-31 (1978) · Zbl 0387.76063
[61] Neelan, A. G.; Nair, M., Hyperbolic Runge-Kutta method using evolutionary algorithm, J Comput Nonlinear Dyn, 13, 11 (2018)
[62] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev, 43, 1, 89-112 (2001) · Zbl 0967.65098
[63] Noh, W., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J Comput Phys, 72, 1, 78-120 (1987) · Zbl 0619.76091
[64] Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev, 51, 1, 82-126 (2009) · Zbl 1160.65330
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.