Local convexity for second order differential equations on a Lie algebroid. (English) Zbl 1477.34028

Summary: A theory of local convexity for a second order differential equation (sode) on a Lie algebroid is developed. The particular case when the (sode) is homogeneous quadratic is extensively discussed.


34A26 Geometric methods in ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
17B66 Lie algebras of vector fields and related (super) algebras
22A22 Topological groupoids (including differentiable and Lie groupoids)
Full Text: DOI arXiv


[1] A. Anahory Simoes, J. C. Marrero and D. Martín de Diego, Exact discrete Lagrangian mechanics for nonholonomic mechanics, preprint, arXiv: 2003.11362, 2020.
[2] J. Cortés; M. de León; J. C. Marrero; D. Martín de Diego; E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids, Int. J. Geom. Methods Mod. Phys., 3, 509-558 (2006) · Zbl 1136.70317
[3] J. Cortés; M. de León; J. C. Marrero; E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete and Contin. Dyn. Syst., 24, 213-271 (2009) · Zbl 1161.70336
[4] M. Crainic; R. L. Fernandes, Integrability of Lie brackets, Ann. of Math., 157, 575-620 (2003) · Zbl 1037.22003
[5] M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241-R308. · Zbl 1181.37003
[6] M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, Vol. 158. North-Holland Publishing Co., Amsterdam, 1989.
[7] J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520. · Zbl 1200.37057
[8] P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, Vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
[9] K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series Vol. 213, Cambridge University Press, 2005. · Zbl 1078.58011
[10] J. C. Marrero; D. Martín de Diego; E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids, Nonlinearity, 19, 3003-3004 (2006)
[11] J. C. Marrero, D. Martín de Diego and E. Martínez, The local description of discrete mechanics, Geometry, Mechanics, and Dynamics, Fields Inst. Commun., Springer, New York, 73 (2015), 285-317. · Zbl 1365.53078
[12] J. C. Marrero, D. Martín de Diego and E. Martínez, On the exact discrete Lagrangian function for variational integrators: theory and applications, preprint, arXiv: 1608.01586, 2016.
[13] J. C. Marrero, D. Martín de Diego and E. Martínez, Variational integrators and error analysis for reduced mechanical Lagrangian systems, Work in progress, 2021
[14] J. E. Marsden; M. West, Discrete mechanics and variational integrators, Acta Numer., 10, 357-514 (2001) · Zbl 1123.37327
[15] E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67, 295-320 (2001) · Zbl 1002.70013
[16] E. Martínez, Variational calculus on Lie algebroids, ESAIM Control Optim. Calc. Var., 14, 356-380 (2008) · Zbl 1135.49027
[17] J. Moser; A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139, 217-243 (1991) · Zbl 0754.58017
[18] G. W. Patrick; C. Cuell, Error analysis variational integrators of unconstrained Lagrangian systems, Numer. Math., 113, 243-264 (2009) · Zbl 1177.65119
[19] A. Weinstein, Lagrangian Mechanics and groupoids, Fields Inst. Comm., Amer. Math. Soc., Providence, RI,, 7 (1996), 207-231.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.