×

The spectral theorem for normal operators on a Clifford module. (English) Zbl 07452163

Summary: In this paper, using the recently discovered notion of the \(S\)-spectrum, we prove the spectral theorem for a bounded or unbounded normal operator on a Clifford module (i.e., a two-sided Hilbert module over a Clifford algebra based on units that all square to be \(-1\)). Moreover, we establish the existence of a Borel functional calculus for bounded or unbounded normal operators on a Clifford module. Towards this end, we have developed many results on functional analysis, operator theory, integration theory and measure theory in a Clifford setting which may be of an independent interest. Our spectral theory is the natural spectral theory for the Dirac operator on manifolds in the non-self adjoint case. Moreover, our results provide a new notion of spectral theory and a Borel functional calculus for a class of \(n\)-tuples of commuting or non-commuting operators on a real or complex Hilbert space. Moreover, for a special class of \(n\)-tuples of operators on a Hilbert space our results provide a complementary functional calculus to the functional calculus of J. L. Taylor.

MSC:

47A10 Spectrum, resolvent
47A60 Functional calculus for linear operators
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adler, S., Quaternionic Quantum Mechanics and Quaternionic Quantum Fields, Volume 88 of International Series of Monographs on Physics (1995), New York: Oxford University Press, New York · Zbl 0885.00019
[2] Alpay, D.; Bolotnikov, V.; Colombo, F.; Sabadini, I., Self-mappings of the quaternionic unit ball: multiplier properties, the Schwarz-Pick inequality, and the Nevanlinna-Pick interpolation problem, Indiana Univ. Math. J., 64, 151-180 (2015) · Zbl 1318.30075
[3] Alpay, D.; Colombo, F.; Gantner, J.; Sabadini, S., A new resolvent equation for the S-functional calculus, J. Geom. Anal., 25, 3, 1939-1968 (2015) · Zbl 1354.47016
[4] Alpay, D.; Colombo, F.; Kimsey, DP, The spectral theorem for quaternionic unbounded normal operators based on the \(S\)-spectrum, J. Math. Phys., 57, 2, 023503 (2016) · Zbl 1357.47022
[5] Alpay, D.; Colombo, F.; Sabadini, I., Slice Hyperholomorphic Schur Analysis, Operator Theory: Advances and Applications (2016), Cham: Birkhäuser/Springer, Cham · Zbl 1366.30001
[6] Alpay, D., Colombo, F., Sabadini, I.: Quaternionic de Branges Spaces and Characteristic Operator Function. Springer Briefs in Mathematics. Springer, Cham (2020/2021) · Zbl 1475.47001
[7] Alpay, D.; Colombo, F.; Qian, T.; Sabadini, I., The \(H^\infty\) functional calculus based on the S-spectrum for quaternionic operators and for n-tuples of noncommuting operators, J. Funct. Anal., 271, 6, 1544-1584 (2016) · Zbl 1350.47017
[8] Berberian, S. K.: Notes on Spectral Theory. Van Nostrand Mathematical Studies, No. 5, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London (1966) · Zbl 0138.39104
[9] Birkhoff, G.; von Neumann, J., The logic of quantum mechanics, Ann. Math., 37, 823-843 (1936) · JFM 62.1061.04
[10] Brackx, F.; Delanghe, R.; Sommen, F., Clifford Analysis, Research Notes in Mathematics (1982), Boston: Pitman (Advanced Publishing Program), Boston · Zbl 0529.30001
[11] Bulla, E.; Constales, D.; Krausshar, RS; Ryan, J., Dirac type operators for Spin manifolds associated to congruence subgroups of generalized modular groups, J. Reine Angew. Math., 643, 1-19 (2010) · Zbl 1204.58029
[12] Cerejeiras, P.; Colombo, F.; Kähler, U.; Sabadini, I., Perturbation of normal quaternionic operators, Trans. Am. Math. Soc., 372, 5, 3257-3281 (2019) · Zbl 07089861
[13] Cohn, D. L.: Measure Theory, 2nd edn. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser/Springer, New York (2013) · Zbl 1292.28002
[14] Colombo, F., Gantner, J.: Quaternionic closed operators, fractional powers and fractional diffusion processes, Operator Theory: Advances and Applications, vol. 274. Birkhäuser/Springer, Cham (2019) · Zbl 1458.47001
[15] Colombo, F., Deniz-González, D., Pinton, S.: The noncommutative fractional Fourier law in bounded and unbounded domains. Complex Anal. Oper. Theory, 15(7), Paper No. 114 (2021) · Zbl 07422101
[16] Colombo, F.; Gantner, J.; Kimsey, DP, Spectral Theory on the S-Spectrum for Quaternionic Operators. Operator Theory: Advances and Applications (2018), Cham: Birkhäuser/Springer, Cham · Zbl 1422.47002
[17] Colombo, F., Gantner, J., Kimsey, D.P., Sabadini, I.: Universality property of the \(S\)-functional calculus, noncommuting matrix variables and Clifford operators, Preprint (2020)
[18] Colombo, F.; Kimsey, DP; Pinton, S.; Sabadini, I., Slice monogenic functions of a Clifford variable via the \(S\)-functional calculus, Proc. Am. Math. Soc. Ser. B, 8, 281-296 (2021) · Zbl 1493.47014
[19] Colombo, F.; Peloso, M.; Pinton, S., The structure of the fractional powers of the noncommutative Fourier law, Math. Methods Appl. Sci., 42, 18, 6259-6276 (2019) · Zbl 1447.47062
[20] Colombo, F.; Sabadini, I.; Sommen, F.; Struppa, DC, Analysis of Dirac Systems and Computational Algebra. Progress in Mathematical Physics (2004), Boston: Birkhäuser Boston Inc, Boston · Zbl 1064.30049
[21] Colombo, F.; Sabadini, I.; Struppa, DC, Slice monogenic functions, Isr. J. Math., 171, 385-403 (2009) · Zbl 1172.30024
[22] Colombo, F.; Sabadini, I.; Struppa, DC, An extension theorem for slice monogenic functions and some of its consequences, Isr. J. Math., 177, 369-389 (2010) · Zbl 1213.30085
[23] Colombo, F.; Sabadini, I.; Struppa, DC, Duality theorems for slice hyperholomorphic functions, J. Reine Angew. Math., 645, 85-105 (2010) · Zbl 1204.30038
[24] Colombo, F.; Sabadini, I.; Struppa, DC, A new functional calculus for noncommuting operators, J. Funct. Anal., 254, 2255-2274 (2008) · Zbl 1143.47012
[25] Colombo, F., Sabadini, I., Struppa, D.C.: Michele Sce’s Works in Hypercomplex Analysis 1955-1973. A Translation with Commentaries. Birkhäuser, Hardcover. ISBN: 978-3-030-50215-7 (2020) · Zbl 1448.30001
[26] Colombo, F.; Sabadini, I.; Struppa, DC, Entire Slice Regular Functions. Springer Briefs in Mathematics (2016), Cham: Springer, Cham · Zbl 1372.30001
[27] Colombo, F.; Sabadini, I.; Struppa, DC, Noncommutative Functional Calculus. Theory and Applications of Slice Hyperholomorphic Functions, Progress in Mathematics (2011), Basel: Birkhäuser/Springer Basel AG, Basel · Zbl 1228.47001
[28] Conway, JB, A Course in Functional Analysis. Graduate Texts in Mathematics (1990), New York: Springer, New York · Zbl 0706.46003
[29] Delanghe, R., Sommen, F., Soucek, V.: Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, Related REDUCE software by F. Brackx and D. Constales. With 1 IBM-PC floppy disk (3.5 inch). Mathematics and its Applications, vol. 53. Kluwer Academic Publishers Group, Dordrecht (1992) · Zbl 0747.53001
[30] Farenick, DR; Pidkowich, BAF, The spectral theorem in quaternions, Linear Algebra Appl., 371, 75-102 (2003) · Zbl 1030.15015
[31] Fischmann, M.; Krattenthaler, C.; Somberg, P., On conformal powers of the Dirac operator on Einstein manifolds, Math. Z., 280, 825-839 (2015) · Zbl 1323.53052
[32] Friedrich, T.: Dirac Operators in Riemannian Geometry. Translated from the 1997 German Original by Andreas Nestke. Graduate Studies in Mathematics, vol. 25. American Mathematical Society, Providence (2000) · Zbl 0949.58032
[33] Gal, S.; Sabadini, I., Quaternionic Approximation. With Application to Slice Regular Functions. Frontiers in Mathematics (2019), Cham: Birkhäuser/Springer, Cham · Zbl 1432.30034
[34] Gantner, J., On the equivalence of complex and quaternionic quantum mechanics, Quantum Stud. Math. Found., 5, 2, 357-390 (2018) · Zbl 1402.81133
[35] Gantner, J.: Operator theory on one-sided quaternionic linear spaces: intrinsic S-functional calculus and spectral operators. Mem. Am. Math. Soc. 267(1297) (2020) · Zbl 1479.47001
[36] Gentili, G.; Stoppato, C.; Struppa, DC, Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics (2013), Heidelberg: Springer, Heidelberg · Zbl 1269.30001
[37] Ghiloni, R.; Recupero, V., Semigroups over real alternative *-algebras: generation theorems and spherical sectorial operators, Trans. Am. Math. Soc., 368, 4, 2645-2678 (2016) · Zbl 1351.30037
[38] Giarrusso, DM; Romano, JD, A polarization formula for Clifford modules, Linear Multilinear Algebra, 35, 3-4, 191.4-194.4 (1993) · Zbl 0789.15032
[39] Gilbert, JE; Murray, MAM, Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge Studies in Advanced Mathematics (1991), Cambridge: Cambridge University Press, Cambridge · Zbl 0733.43001
[40] Gürlebeck, K.; Habetha, K.; Sprößig, W., Application of Holomorphic Functions in Two and Higher Dimensions (2016), Cham: Birkhääuser/Springer, Cham · Zbl 1359.30053
[41] Gürlebeck, K.; Sprößig, W., Quaternionic Analysis and Elliptic Boundary Value Problems, International Series of Numerical Mathematics, 253 (1990), Basel: Birkhäuser Verlag, Basel · Zbl 0850.35001
[42] Halmos, PR, Measure Theory (1950), New York: D. Van Nostrand Company Inc, New York · Zbl 0040.16802
[43] Homma, Y., The higher spin Dirac operators on 3-dimensional manifolds, Tokyo J. Math., 24, 2, 579-596 (2001) · Zbl 1021.53026
[44] Jefferies, B., Spectral Properties of Noncommuting Operators. Lecture Notes in Mathematics (2004), Berlin: Springer, Berlin · Zbl 1056.47002
[45] Jefferies, B.; McIntosh, A., The Weyl calculus and Clifford analysis, Bull. Austral. Math. Soc., 57, 329-341 (1998) · Zbl 0915.47015
[46] Jefferies, B.; McIntosh, A.; Picton-Warlow, J., The monogenic functional calculus, Stud. Math., 136, 99-119 (1999) · Zbl 0971.47013
[47] Kawai, S., Spectrum of the Dirac operator on manifold with asymptotically flat end, J. Geom. Phys., 110, 195-212 (2016) · Zbl 1357.58012
[48] Kim, EC; Friedrich, T., The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys., 33, 128-172 (2000) · Zbl 0961.53023
[49] Kirchberg, K-D, Lower bounds for the first eigenvalue of the Dirac operator on compact Riemannian manifolds, Differ. Geom. Appl., 29, 374-387 (2011) · Zbl 1222.53052
[50] Lawson, HB; Michelsohn, ML, Spin Geometry. Princeton Mathematical Series (2016), Princeton: Princeton University Press, Princeton
[51] Lax, PD, Functional Analysis. Pure and Applied Mathematics (2002), New York: Wiley, New York · Zbl 1009.47001
[52] Leitner, F., The first eigenvalue of the Kohn-Dirac operator on CR manifolds, Differ. Geom. Appl., 61, 97-132 (2018) · Zbl 1454.32026
[53] Li, C.; McIntosh, A.; Qian, T., Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, Rev. Mat. Iberoam., 10, 665-721 (1994) · Zbl 0817.42008
[54] McIntosh, A.; Pryde, A., A functional calculus for several commuting operators, Indiana U. Math. J., 36, 421-439 (1987) · Zbl 0694.47015
[55] Mitrea, M., Clifford Wavelets, Singular Integrals, and Hardy Spaces. Lecture Notes in Mathematics (1994), Berlin: Springer, Berlin · Zbl 0822.42018
[56] Moroianu, A.; Moroianu, S., The Dirac spectrum on manifolds with gradient conformal vector fields, J. Funct. Anal., 253, 207-219 (2007) · Zbl 1140.58016
[57] Muraleetharan, B.; Sabadini, I.; Thirulogasanthar, K., S-spectrum and the quaternionic Cayley transform of an operator, J. Geom. Phys., 124, 442-455 (2018) · Zbl 1390.81244
[58] Muraleetharan, B.; Thirulogasanthar, K., Fredholm operators and essential S-spectrum in the quaternionic setting, J. Math. Phys., 59, 10, 103506 (2018) · Zbl 06980672
[59] Muraleetharan, B.; Thirulogasanthar, K., Weyl and Browder S-spectra in a right quaternionic Hilbert space, J. Geom. Phys., 135, 7-20 (2019) · Zbl 06997111
[60] Nakad, R.; Roth, J., Lower bounds for the eigenvalues of the Spinc Dirac operator on manifolds with boundary, C. R. Math. Acad. Sci. Paris, 354, 425-431 (2016) · Zbl 1387.58010
[61] Nakad, R.; Roth, J., Lower bounds for the eigenvalues of the Spinc Dirac operator on submanifolds, Arch. Math. (Basel), 104, 451-461 (2015) · Zbl 1321.53056
[62] Pedersen, GK, Analysis Now. Graduate Texts in Mathematics (1989), New York: Springer, New York · Zbl 0668.46002
[63] Qian, T., Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space, Math. Ann., 310, 601-630 (1998) · Zbl 0921.42012
[64] Qian, T.; Li, P., Singular Integrals and Fourier Theory on Lipschitz Boundaries (2019), Singapore, Beijing: Science Press, Springer, Singapore, Beijing · Zbl 1435.47001
[65] Rocha-Chavez, R., Shapiro, M., Sommen, F.: Integral theorems for functions and differential forms. In: Cm. Chapman & Hall/CRC Research Notes in Mathematics, vol. 428. Chapman & Hall/CRC, Boca Raton (2002) · Zbl 0991.32002
[66] Schmüdgen, K., Unbounded Self-Adjoint Operators on Hilbert Space. Graduate Texts in Mathematics (2012), Dordrecht: Springer, Dordrecht · Zbl 1257.47001
[67] Teichmüller, O., Operatoren im Wachsschen Raum (German), J. Reine Angew. Math., 174, 73-124 (1936) · JFM 61.1200.01
[68] Thirulogasanthar, K., Muraleetharan, B.: Squeezed states in the quaternionic setting. Math. Phys. Anal. Geom. 23(1), Paper No. 8 (2020) · Zbl 1436.81068
[69] Viswanath, K., Normal operations on quaternionic Hilbert spaces, Trans. Am. Math. Soc., 162, 337-350 (1971) · Zbl 0234.47024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.