×

New invariant domain preserving finite volume schemes for compressible flows. (English) Zbl 1481.76146

Muñoz-Ruiz, María Luz (ed.) et al., Recent advances in numerical methods for hyperbolic PDE systems. NumHyp 2019. Selected papers based on the presentations at the 6th international conference on numerical methods for hyperbolic problems, Málaga, Spain, June 17–21, 2019. Cham: Springer. SEMA SIMAI Springer Ser. 28, 131-153 (2021).
Summary: We present new invariant domain preserving finite volume schemes for the compressible Euler and Navier-Stokes-Fourier systems. The schemes are entropy stable and preserve positivity of density and internal energy. More importantly, their convergence towards a strong solution of the limit system has been proved rigorously in [E. Feireisl et al., Numer. Math. 144, No. 1, 89–132 (2020; Zbl 1435.65137); “ On the convergence of a finite volume method for the Navier-Stokes-Fourier system”, IMA J. Numer. Anal. 41, No. 4, 2388-2422 (2021; doi:10.1093/imanum/draa060)]. We will demonstrate their accuracy and robustness on a series of numerical experiments.
For the entire collection see [Zbl 1470.65004].

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
76N06 Compressible Navier-Stokes equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1435.65137
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ben-Artzi, M., Li, J., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys. 218(1), 19-43 (2006) · Zbl 1158.76375
[2] Březina, J., Feireisl, E.: Measure-valued solutions to the complete Euler system. J. Math. Soc. Jpn. 70(4), 1227-1245 (2018) · Zbl 1408.35134
[3] Březina, J., Feireisl, E., Novotný, A.: Stability of strong solutions to the Navier-Stokes-Fourier system. SIAM J. Math. Anal. 52(2), 1761-1785 (2020) · Zbl 1439.35365
[4] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (2002) · Zbl 0999.65129
[5] Cockburn, B., Shu, C.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411-435 (1989) · Zbl 0662.65083
[6] Dolejší, V., Feistauer, M.: Discontinuous Galerkin method: analysis and applications to compressible flow. Springer Series in Computational Mathematics, vol. 48, Springer-Verlag (2015) · Zbl 1401.76003
[7] Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713-1018 (2000) · Zbl 0981.65095
[8] Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc. Var. Partial Dif. 55(6), 55-141 (2016) · Zbl 1360.35143
[9] Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: A finite volume scheme for the Euler system inspired by the two velocities approach. Numer. Math. 144, 89-132 (2020) · Zbl 1435.65137
[10] Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: Convergence of a finite volume scheme for the compressible Navier-Stokes system. ESAIM: M2AN 53(6), 1957-1979 (2019) · Zbl 1447.35243
[11] Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: On the convergence of a finite volume scheme for the compressible Navier-Stokes-Fourier system. IMA J. Numer. Anal. (2020). https://doi.org/10.1093/imanum/draa060
[12] Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 3 271-306 (1959) · Zbl 0171.46204
[13] Guermond, J.L., Popov, B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74(2), 284-305 (2014) · Zbl 1446.76147
[14] Guermond, J.L., Popov, B.: Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Num. Anal. 54, 2466-2489 (2016) · Zbl 1346.65050
[15] Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25(3), 995-1017 (2003) · Zbl 1096.65089
[16] Lukáčová-Medvid’ová, M., Saibertová, J., Warnecke, G.: Finite Volume Evolution Galerkin Methods for Nonlinear Hyperbolic Systems. J. Comput. Phys. 183(2), 533-562 (2002) · Zbl 1090.65536
[17] Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14(6), 1394-1414 (1993) · Zbl 0785.76050
[18] Shen, H., Wen, C.Y., Zhang, D.L.: A characteristic space-time conservation element and solution element method for conservation laws. J. Comput. Phys. 288, 101-118 (2015) · Zbl 1354.65197
[19] Shu, C., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439-471 (1988) · Zbl 0653.65072
[20] Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems. Acta Numer. 12, 451-512 (2003) · Zbl 1046.65078
[21] Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. Math. Comp. 49(179), 91-103 (1987) · Zbl 0641.65068
[22] Tadmor, E.: Minimum entropy principle in the gas dynamic equations. Appl. Num. Math. 2, 211-219 (1986) · Zbl 0625.76084
[23] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 3rd edn. Springer-Verlag, Berlin (2009) · Zbl 1227.76006
[24] VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.A.: Well-centered triangulation. SIAM J. Sci. Comput. 31(6), 4497-4523 (2010) · Zbl 1253.65030
[25] Xu, K., Kim, C., Martinelli, L., Jameson, A.: BGK-based schemes for the simulation of compressible flow. Int. J. Comput. Fluid Dyn · Zbl 0896.76076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.