On vanishing and localizing around corners of electromagnetic transmission resonances. (English) Zbl 1477.78003

Summary: We are concerned with the geometric properties of the transmission resonance in electromagnetic scattering. The transmission eigenvalue problem is a type of non-elliptic and non-selfadjoint spectral problem which connects to electromagnetic scattering in many aspects in a delicate and intriguing way. It is shown in [E. Blåsten et al., “On an electromagnetic problem in a corner and its applications”, Anal. PDE (In press)] under a Hölder regularity assumption that the transmission eigenfunctions vanish around a corner. In this paper, we make two novel contributions to this emerging topic. First, we establish the vanishing property under a different regularity criterion in terms of the Herglotz wave approximation which covers more general functions. Second, through extensive numerical experiments, we verify the vanishing property and moreover, we show the transmission eigenfunctions exhibit a certain localising/concentrating phenomenon around the corner, especially in the concave case.


78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
76M10 Finite element methods applied to problems in fluid mechanics


Full Text: DOI


[1] Blåsten, E., Liu, H., Xiao, J.: On an electromagnetic problem in a corner and its applications. Anal. PDE. (2020) (In press)
[2] Blåsten, E., Liu, H.: On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273, 3616-3632 (2017). Addendum. arXiv:1710.08089 · Zbl 1387.35437
[3] Deng, Y., Duan, C., Liu, H.: On vanishing near corners of conductive transmission eigenfunctions. arXiv:2011.14226
[4] Diao, H.; Cao, X.; Liu, H., On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications, Commun. Partial Differ. Equ., 46, 630-679 (2021) · Zbl 1475.35328
[5] Ammari, H.; Garnier, J.; Jing, W.; Kang, H.; Lim, M.; Sølna, K.; Wang, H., Mathematical and statistical methods for multistatic imaging: Lecture notes in mathematics (2013), Cham: Springer, Cham · Zbl 1288.35001
[6] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (2019), New York: Springer, New York · Zbl 1425.35001
[7] Monk, P., Finite Element Method for Maxwell’s Equations (2003), Oxford: Oxford University Press, Oxford · Zbl 1024.78009
[8] Liu, H.; Wang, Y.; Zhong, S., Nearly non-scattering electromagnetic wave set and its application, Z. Angew. Math. Phys., 68, 2, 15 (2017) · Zbl 1432.78006
[9] Liu, H.; Xiao, J., On electromagnetic scattering from a penetrable corner, SIAM J. Math. Anal., 49, 6, 5207-5241 (2017) · Zbl 1383.78021
[10] Blåsten, E., Nonradiating sources and transmission eigenfunctions vanish at corners and edges, SIAM J. Math. Anal., 50, 6, 6255-6270 (2018) · Zbl 1409.35164
[11] Blåsten, E.; Lin, Y-H, Radiating and non-radiating sources in elasticity, Inverse Probl., 35, 1, 015005 (2019) · Zbl 1408.74032
[12] Blåsten, E.; Liu, H., Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems, SIAM J. Math. Anal., 53, 4, 3801-3837 (2021) · Zbl 1479.35838
[13] Blåsten, E.; Liu, H., On corners scattering stably and stable shape determination by a single far-field pattern, Indiana Univ. Math. J., 70, 907-947 (2021) · Zbl 1479.35648
[14] Blåsten, E.; Päivärinta, L.; Sylvester, J., Corners always scatter, Commun. Math. Phys., 331, 725-753 (2014) · Zbl 1298.35214
[15] Cakoni, F., Vogelius, M.: Singularities almost always scatter: regularity results for non-scattering inhomogeneities. arXiv:2104.05058
[16] Cakoni, F.; Xiao, J., On corner scattering for operators of divergence form and applications to inverse scattering, Commun. Partial Differ. Equ., 46, 413-441 (2021) · Zbl 1469.35164
[17] Salo, M.; Päivärinta, L.; Vesalainen, E., Strictly convex corners scatter, Rev. Mat. Iberoamericana, 33, 4, 1369-1396 (2017) · Zbl 1388.35138
[18] Salo, M., Shahgholian, H.: Free boundary methods and non-scattering phenomena. arXiv:2106.15154 · Zbl 1480.35408
[19] Blåsten, E.; Li, X.; Liu, H.; Wang, Y., On vanishing and localizing of transmission eigenfunctions near singular points: a numerical study, Inverse Probl., 33, 105001 (2017) · Zbl 1442.65332
[20] Chow, Y-T; Deng, Y.; He, Y.; Liu, H.; Wang, X., Surface-localized transmission eigenstates, super-resolution imaging and pseudo surface plasmon modes, SIAM J. Imaging Sci., 14, 3, 946-975 (2021) · Zbl 1478.35159
[21] Chow, Y.-T., Deng, Y., Liu, H., Sunkula, M.: Surface concentration of transmission eigenfunctions. arXiv:2109.14361
[22] Deng, Y., Jiang, Y., Liu, H., Zhang, K.: On new surface-localized transmission eigenmodes. Inverse Probl. Imaging (2021) (In press)
[23] Deng, Y., Liu, H., Wang, X., Wu, W.: On geometrical properties of electromagnetic transmission eigenfunctions and artificial mirage. SIAM J. Appl. Math. (2021) (In press)
[24] Diao, H.; Liu, H.; Sun, B., On a local geometric property of the generalized elastic transmission eigenfunctions and application, Inverse Probl., 37, 105015 (2021)
[25] Blåsten, E.; Liu, H., Recovering piecewise-constant refractive indices by a single far-field pattern, Inverse Probl., 36, 8, 085005 (2020) · Zbl 1446.35262
[26] Cao, X.; Diao, H.; Liu, H., Determining a piecewise conductive medium body by a single far-field measurement, CSIAM Trans. Appl. Math., 1, 740-765 (2020)
[27] Liu, H., On local and global structures of transmission eigenfunctions and beyond, J. Inverse Ill Posed Probl. (2020)
[28] Cakoni, F.; Colton, D.; Haddar, H., Inverse Scattering Theory and Transmission Eigenvalues (2016), Philadelphia: SIAM, Philadelphia · Zbl 1366.35001
[29] Colton, D.; Kress, R., Looking back on inverse scattering theory, SIAM Rev., 60, 4, 779-807 (2018) · Zbl 1402.35090
[30] Monk, P.; Sun, J., Finite element methods for Maxwell’s transmission eigenvalues, SIAM J. Sci. Comput., 34, 3, B247-B264 (2012) · Zbl 1246.78020
[31] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 3-1, 251-266 (2020) · Zbl 1266.68090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.