Shortcut to adiabatic two-qubit state swap in a superconducting circuit QED via effective drivings. (English) Zbl 1483.81041

Summary: Optimal two-qubit operation is of significance to quantum information processing. An efficient scheme is proposed for realizing the shortcut to adiabatic two-qubit state swap in a superconducting circuit quantum electrodynamics (QED) via effective drivings. Two superconducting qutrits are coupled to a common cavity field and individual classical drivings. Based on two Gaussian-type Rabi drivings, two-qubit state swap can be adiabatically implemented within a reduced three-state system. To speed up the operation, these two original Rabi drivings are modified in the framework of shortcuts to adiabaticity, instead of adding an extra counterdiabatic driving. Moreover, owing to a shorter duration time, the decoherence effects on the accelerated quantum operation can be mitigated significantly. The strategy could offer an optimized method to construct fast and robust quantum operations on superconducting qubits experimentally.


81P68 Quantum computation
78A55 Technical applications of optics and electromagnetic theory
81P15 Quantum measurement theory, state operations, state preparations
81V10 Electromagnetic interaction; quantum electrodynamics
81P65 Quantum gates
81Q37 Quantum dots, waveguides, ratchets, etc.
82D55 Statistical mechanics of superconductors
70H11 Adiabatic invariants for problems in Hamiltonian and Lagrangian mechanics
81S22 Open systems, reduced dynamics, master equations, decoherence
Full Text: DOI


[1] Makhlin, Y.; Schön, G.; Shnirman, A., Quantum-state engineering with Josephson-junction devices, Rev. Mod. Phys., 73, 357 (2001) · Zbl 1039.81514
[2] Clarke, J.; Wilhelm, FK, Superconducting quantum bits, Nature, 453, 1031 (2008)
[3] Wendin, G., Quantum information processing with superconducting circuits: a review, Rep. Prog. Phys., 80, 106001 (2017)
[4] Huang, H-L; Wu, D.; Fan, D.; Zhu, X., Superconducting quantum computing: a review, Sci. Chin.-Inf. Sci., 63, 180501 (2020)
[5] Krech, W.; Wagner, Th, Linear microwave response of a superconducting charge qubit, Phys. Lett. A, 275, 159 (2000) · Zbl 1115.81327
[6] Shevchenko, SN; Kiyko, AS; Omelyanchouk, AN; Krech, W., Dynamic behavior of Josephson-junction qubits: crossover between Rabi oscillations and Landau-Zener transitions, Low Temp. Phys., 31, 569 (2005)
[7] Shnyrkov, VI; Wagner, Th; Born, D.; Shevchenko, SN; Krech, W.; Omelyanchouk, AN; Il’ichev, E.; Meyer, H-G, Multiphoton transitions between energy levels in a phase-biased Cooper-pair box, Phys. Rev. B, 73, 024506 (2006)
[8] Wallraff, A.; Schuster, DI; Blais, A.; Frunzio, L.; Huang, R-S; Majer, J.; Kumar, S.; Girvin, SM; Schoelkopf, RJ, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, 431, 162 (2004)
[9] Girvin, SM; Devoret, MH; Schoelkopf, RJ, Circuit QED and engineering charge-based superconducting qubits, Phys. Scr. T, 137, 014012 (2009)
[10] Blais, A.; Girvin, SM; Oliver, WD, Quantum information processing and quantum optics with circuit quantum electrodynamics, Nat. Phys., 16, 247 (2020)
[11] Majer, J.; Chow, JM; Gambetta, JM; Koch, J.; Johnson, BR; Schreier, JA; Frunzio, L.; Schuster, DI; Houck, AA; Wallraff, A.; Blais, A.; Devoret, MH; Girvin, SM; Schoelkopf, RJ, Coupling superconducting qubits via a cavity bus, Nature, 449, 443 (2007)
[12] Gao, G-L; Song, F-Q; Huang, S-S; Wang, H.; Yuan, X-Z; Wang, M-F; Jiang, N-Q, A simple scheme to generate χ -type four-charge entangled states in circuit QED, Chin. Phys. B, 21, 044209 (2012)
[13] Gao, GL; Cai, GC; Huang, SS; Tang, LY; Gu, WJ; Wang, MF; Jiang, NQ, \(1 \rightarrow N1 → N\) quantum controlled phase gate realized in a circuit QED system, Sci. Chin. Phys. Mech. Astro., 55, 1422 (2012)
[14] Blais, A.; Gambetta, J.; Wallraff, A.; Schuster, DI; Girvin, SM; Devoret, MH; Schoelkopf, RJ, Quantum-information processing with circuit quantum electrodynamics, Phys. Rev. A, 75, 032329 (2007)
[15] Billangeon, P-M; Tsai, JS; Nakamura, Y., Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits, Phys. Rev. B, 91, 094517 (2015)
[16] Kim, MD; Kim, J., Scalable quantum computing model in the circuit-QED lattice with circulator function, Quantum Inf. Process., 16, 192 (2017) · Zbl 1387.81163
[17] Lucero, E.; Kelly, J.; Bialczak, RC; Lenander, M.; Mariantoni, M.; Neeley, M.; O’Connell, AD; Sank, D.; Wang, H.; Weides, M.; Wenner, J.; Yamamoto, T.; Cleland, AN; Martinis, JM, Reduced phase error through optimized control of a superconducting qubit, Phys. Rev. A, 82, 042339 (2010)
[18] D’Arrigo, A.; Paladino, E., Optimal operating conditions of an entangling two-transmon gate, New J. Phys., 14, 053035 (2012)
[19] Liebermann, PJ; Wilhelm, FK, Optimal qubit control using single flux quantum pulses, Phys. Rev. Appl., 6, 024022 (2016)
[20] Basilewitsch, D.; Marder, L.; Koch, CP, Dissipative quantum dynamics and optimal control using iterative time ordering: an application to superconducting qubits, Eur. Phys. J. B, 91, 161 (2018)
[21] Bao, S.; Kleer, S.; Wang, R.; Rahmani, A., Optimal control of superconducting gmon qubits using Pontryagin’s minimum principle: Preparing a maximally entangled state with singular bang-bang protocols, Phys. Rev. A, 97, 062343 (2018)
[22] Bergmann, K.; Theuer, H.; Shore, BW, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys., 70, 1003 (1998)
[23] Vitanov, NV; Rangelov, AA; Shore, BW; Bergmann, K., Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys., 89, 015006 (2017)
[24] Bergmann, K., Roadmap on STIRAP applications, J. Phys. B: At. Mol. Opt. Phys., 52, 202001 (2019)
[25] Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martnez-Garaot, S.; Muga, JG, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys., 91, 045001 (2019)
[26] Zhang, J.; Kyaw, TH; Tong, DM; Sjöqvist, E.; Kwek, L-C, Fast non-Abelian geometric gates via transitionless quantum driving, Sci. Rep., 5, 18414 (2015)
[27] Chen, J.; Wei, LF, Deterministic generations of photonic NOON states in cavities via shortcuts to adiabaticity, Phys. Rev. A, 95, 033838 (2017)
[28] Lu, X-J; Li, M.; Zhao, ZY; Zhang, C-L; Han, H-P; Feng, Z-B; Zhou, Y-Q, Nonleaky and accelerated population transfer in a transmon qutrit, Phys. Rev. A, 96, 023843 (2017)
[29] Feng, Z-B; Lu, X-J; Li, M.; Yan, R-Y; Zhou, Y-Q, Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving, New J. Phys., 19, 123023 (2017)
[30] Chen, Y-H; Shi, Z-C; Song, J.; Xia, Y.; Zheng, S-B, Accelerating population transfer in a transmon qutrit via shortcuts to adiabaticity, Ann. Phys., 530, 1700351 (2018)
[31] Wang, T.; Zhang, Z.; Xiang, L.; Jia, Z.; Duan, P.; Cai, W.; Gong, Z.; Zong, Z.; Wu, M.; Wu, J.; Sun, L.; Yin, Y.; Guo, G., The experimental realization of high-fidelity shortcut-to-adiabaticity quantum gates in a superconducting Xmon qubit, New J. Phys., 20, 065003 (2018)
[32] Vepsäläinen, A.; Danilin, S.; Paraoanu, GS, Optimal superadiabatic population transfer and gates by dynamical phase corrections, Quantum Sci. Technol., 3, 024006 (2018)
[33] Yan, T.; Liu, B-J; Xu, K.; Song, C.; Liu, S.; Zhang, Z.; Deng, H.; Yan, Z.; Rong, H.; Huang, K.; Yung, M-H; Chen, Y.; Yu, D., Experimental realization of nonadiabatic shortcut to Non-Abelian geometric gates, Phys. Rev. Lett., 122, 080501 (2019)
[34] Yu, W-R; Ji, X., Fast preparingW state via a chosen path shortcut in circuit QED, Quantum Inf. Process., 18, 247 (2019)
[35] Chu, J.; Li, D.; Yang, X.; Song, S.; Han, Z.; Yang, Z.; Dong, Y.; Zheng, W.; Wang, Z.; Yu, X.; Lan, D.; Tan, X.; Yu, Y., Realization of superadiabatic Two-Qubit gates using parametric modulation in superconducting circuits, Phys. Rev. Appl., 13, 064012 (2020)
[36] Yan, R-Y; Feng, Z-B, Two-Qubit State swap and entanglement creation in a superconducting circuit QED via counterdiabatic drivings, Adv. Quantum Technol., 3, 2000088 (2020)
[37] Feng, Z-B, Coupling charge qubits via Raman transitions in circuit QED, Phys. Rev. A, 78, 032325 (2008)
[38] Vion, D.; Aassime, A.; Cottet, A.; Joyez, P.; Pothier, H.; Urbina, C.; Esteve, D.; Devoret, MH, Manipulating the quantum state of an electrical circuit, Science, 296, 886 (2002)
[39] Vitanov, NV; Stenholm, S., Analytic properties and effective two-level problems in stimulated Raman adiabatic passage, Phys. Rev. A, 55, 648 (1997)
[40] Li, Y-C; Chen, X., Shortcut to adiabatic population transfer in quantum three-level systems: Effective two-level problems and feasible counterdiabatic drivingPhys, Rev. A, 94, 063411 (2016)
[41] Andersen, C.K., Mϕ lmer, K.: Circuit QED Flip-Flop memory with all-microwave switching. Phys. Rev. Appl. 3, 024002 (2015)
[42] Yan, R-Y; Feng, Z-B, Controllable and accelerated generation of entangled states between two superconducting qubits in circuit QED, Opt. Laser Technol., 135, 106699 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.