×

Low Mach number limit of full compressible Navier-Stokes equations with revised Maxwell law. (English) Zbl 1480.35014

Summary: In this paper, we study the low Mach number limit of the full compressible Navier-Stokes equations with revised Maxwell law in \(\mathbb{R}^3\). By applying the uniform estimates of the error system, we prove that the solutions of the full compressible Navier-Stokes equations with time relaxation converge to that of the incompressible Navier-Stokes equations as the Mach number tends to zero. Moreover, the convergence rates are also obtained.

MSC:

35B25 Singular perturbations in context of PDEs
35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Maxwell, JC, On the dynamical theory of gases, Philos. Trans. R. Soc. Lond., 157, 49-88 (1867)
[2] Maisano, G., Evidence of anomalous acoustic behavior from Brillouin scattering in supercooled water, Phys. Rev. Lett., 52, 1025 (1984)
[3] Pelton, M., Viscoelastic flows in simple liquids generated by vibrating nanostructures, Phys. Rev. Lett., 111, 244-502 (2013)
[4] Sette, F., Collective dynamics in water by high energy resolution inelastic x-ray scattering, Phys. Rev. Lett., 75, 850 (1995)
[5] Racke, R.; Saal, J., Hyperbolic Navier-Stokes equations II: global existence of small solutions, Evol. Equ. Control Theory, 1, 217-234 (2012) · Zbl 1371.35223
[6] Yong, WA, Newtonian limit of Maxwell fluid flows, Arch. Ration. Mech. Anal., 214, 3, 913-922 (2014) · Zbl 1304.35580
[7] Chakraborty, D.; Sader, JE, Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales, Phys. Fluids, 27, 052002 (2015) · Zbl 1326.76006
[8] Hu, Y.; Racke, R., Compressible Navier-Stokes equations with revised Maxwells law, J. Math. Fluid Mech., 19, 1, 77-90 (2017) · Zbl 1369.35042
[9] Klaierman, S.; Majda, A., Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., 34, 481-524 (1981) · Zbl 0476.76068
[10] Hoff, D., The zero-Mach limit of compressible flows, Commun. Math. Phys., 192, 3, 543-554 (1998) · Zbl 0907.35098
[11] Danchin, R., Zero Mach number limit for compressible flows with periodic boundary conditions, Am. J. Math., 124, 6, 1153-1219 (2002) · Zbl 1048.35075
[12] Lions, PL; Masmoudi, N., Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77, 6, 585-627 (1998) · Zbl 0909.35101
[13] Desjardins, B.; Grenier, E.; Lions, PL; Masmoudi, N., Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78, 5, 461-471 (1999) · Zbl 0928.00063
[14] Alazard, T., Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180, 1, 1-73 (2006) · Zbl 1108.76061
[15] Guo, B.; Zeng, L.; Ni, G., Low Mach number limit of strong solutions to 3-D full Navier-Stokes equations with Dirichlet boundary condition, Adv. Math. (China), 48, 6, 667-691 (2019) · Zbl 1449.35170
[16] Ou, Y., Low Mach number limit for the non-isentropic Navier-Stokes equations, J. Differ. Equ., 246, 11, 4441-4465 (2009) · Zbl 1170.35495
[17] Jiang, S.; Ou, Y., Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains, J. Math. Pures Appl., 96, 1, 1-28 (2011) · Zbl 1283.35063
[18] Dou, C.; Jiang, S.; Ou, Y., Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, J. Differ. Equ., 258, 2, 379-398 (2015) · Zbl 1310.35187
[19] Feireisl, E.; Novotný, A., The low Mach number limit for the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., 186, 1, 77-107 (2007) · Zbl 1147.76049
[20] Feireisl, E.; Novotný, A.; Petzeltova, H., On the incompressible limit for the Navier-Stokes-Fourier system in domains with wavy bottoms, Math. Models Methods Appl. Sci., 18, 2, 291-324 (2008) · Zbl 1158.35072
[21] Li, F.; Mu, Y., Low Mach number limit of the full compressible Navier-Stokes-Maxwell system, J. Math. Anal. Appl., 412, 1, 334-344 (2014) · Zbl 1308.35221
[22] Sha, K.; Li, Y., Low Mach number limit of the three-dimensional full compressible Navier-Stokes-Korteweg equations, Z. Angew. Math. Phys., 70, 169 (2019) · Zbl 1433.35295
[23] Zhang, S., Low Mach number limit for the full compressible Navier-Stokes equations with Cattaneo’s heat transfer law, Nonlinear Anal., 184, 83-94 (2019) · Zbl 1482.35182
[24] Yong, WA, Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differ. Equ., 155, 1, 89-132 (1999) · Zbl 0942.35110
[25] Racke, R.: Lectures on Nonlinear Evolution Equations. Theory, 2012, vol. 1, pp. 217-234. Vieweg Verlag (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.