The essential spectrum of periodically stationary solutions of the complex Ginzburg-Landau equation. (English) Zbl 1483.35234

Summary: We establish the existence and regularity properties of a monodromy operator for the linearization of the cubic-quintic complex Ginzburg-Landau equation about a periodically stationary (breather) solution. We derive a formula for the essential spectrum of the monodromy operator in terms of that of the associated asymptotic linear differential operator. This result is obtained using the theory of analytic semigroups under the assumption that the Ginzburg-Landau equation includes a spectral filtering (diffusion) term. We discuss applications to the stability of periodically stationary pulses in ultrafast fiber lasers.


35Q56 Ginzburg-Landau equations
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35B10 Periodic solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
37L15 Stability problems for infinite-dimensional dissipative dynamical systems
47D06 One-parameter semigroups and linear evolution equations
78A60 Lasers, masers, optical bistability, nonlinear optics
Full Text: DOI arXiv


[1] Akhmediev, N.; Ankiewicz, A.; Akhmediev, N.; Ankiewicz, A., Three sources and three component parts of the concept of dissipative solitons, Dissipative Solitons: From optics to biology and medicine, Lecture Notes in Physics, 1-28 (2008), Berlin: Springer, Berlin · Zbl 1218.35183
[2] Akhmediev, N.; Soto-Crespo, J.; Town, G., Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach, Phys. Rev. E, 63, 5, 056602 (2001)
[3] Alejo, MA, Nonlinear stability of Gardner breathers, Journal of Differential Equations, 264, 2, 1192-1230 (2018) · Zbl 1378.35259
[4] Alejo, M.A., Cardoso, E.: Dynamics of breathers in the Gardner hierarchy: Universality of the variational characterization (2019)
[5] Alejo, MA; Muñoz, C., Nonlinear stability of mKdV breathers, Communications in Mathematical Physics, 324, 1, 233-262 (2013) · Zbl 1280.35123
[6] Alejo, MA; Munoz, C.; Palacios, JM, On the variational structure of breather solutions II: Periodic mKdV equation, Electron. J. Differential Equations, 56, 26 (2017) · Zbl 1379.35271
[7] Aranson, IS; Kramer, L., The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys., 74, 1, 99-143 (2002) · Zbl 1205.35299
[8] Chong, A.; Buckley, J.; Renninger, W.; Wise, F., All-normal-dispersion femtosecond fiber laser, Opt. Express, 14, 21, 10095-10100 (2006)
[9] Chong, A.; Wright, LG; Wise, FW, Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress, Rep. Prog. Phys., 78, 11, 113901 (2015)
[10] Clarke, S., Grimshaw, R., Miller, P., Pelinovsky, E., Talipova, T.: On the generation of solitons and breathers in the modified Korteweg Vries equation. Chaos: An Interdisciplinary Journal of Nonlinear Science 10(2), 383-392 (2000). doi:10.1063/1.166505 · Zbl 0970.35124
[11] Cuevas-Maraver, J.; Kevrekidis, P.; Frantzeskakis, D.; Karachalios, N.; Haragus, M.; James, G., Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves, Phys. Rev. E, 96, 1, 012202 (2017)
[12] Doelman, A.; Sandstede, B.; Scheel, A.; Schneider, G., The dynamics of modulated wave trains (2009), Providence: American Mathematical Society, Providence · Zbl 1179.35005
[13] Duling, IN, All-fiber ring soliton laser mode locked with a nonlinear mirror, Opt. Lett., 16, 8, 539-541 (1991)
[14] Edmunds, D.; Evans, D., Spectral theory and differential operators (2018), Oxford: Oxford University Press, Oxford · Zbl 1447.47006
[15] Engel, K.; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations (2000), Berlin: Springer, Berlin · Zbl 0952.47036
[16] Evans, L., Partial Differential Equations (Graduate Studies in Mathematics) (2010), Providence, RI: American Mathematical Society, Providence, RI
[17] Fermann, M.; Kruglov, V.; Thomsen, B.; Dudley, J.; Harvey, J., Self-similar propagation and amplification of parabolic pulses in optical fibers, Phys. Rev. Lett., 84, 26, 6010 (2000)
[18] Garnier, J.; Kalimeris, K., Inverse scattering perturbation theory for the nonlinear Schrödinger equation with non-vanishing background, Journal of Physics A: Mathematical and Theoretical, 45, 3, 035202 (2012) · Zbl 1232.35151
[19] Gesztesy, F., Weikard, R.: Floquet theory revisited. Differential equations and mathematical physics pp. 67-84 (1995) · Zbl 0946.47031
[20] Gordon, JP; Haus, HA, Random walk of coherently amplified solitons in optical fiber transmission, Opt. Lett., 11, 665-667 (1986)
[21] Grelu, P.; Akhmediev, N., Dissipative solitons for mode-locked lasers, Nature photonics, 6, 2, 84 (2012)
[22] Hanche-Olsen, H.; Holden, H., The Kolmogorov-Riesz compactness theorem, Expositiones Mathematicae, 28, 4, 385-394 (2010) · Zbl 1208.46027
[23] Hartl, I.; Schibli, T.; Marcinkevicius, A.; Yost, D.; Hudson, D.; Fermann, M.; Ye, J., Cavity-enhanced similariton Yb-fiber laser frequency comb: \(3\times 10^{14} W/cm^2\) peak intensity at 136 MHz, Opt. Lett., 32, 19, 2870-2872 (2007)
[24] Jones, CR; Kutz, JN, Stability of mode-locked pulse solutions subject to saturable gain: Computing linear stability with the Floquet-Fourier-Hill method, J. Opt. Soc. Amer. B, 27, 6, 1184-1194 (2010)
[25] Kapitula, T., Stability criterion for bright solitary waves of the perturbed cubic-quintic Schrödinger equations, Physica D, 116, 95-120 (1998) · Zbl 0935.35149
[26] Kapitula, T.; Promislow, K., Spectral and dynamical stability of nonlinear waves (2013), Berlin: Springer, Berlin · Zbl 1297.37001
[27] Kärtner, F., Morgner, U., Schibli, T., Ell, R., Haus, H., Fujimoto, J., Ippen, E.: Few-cycle pulses directly from a laser. In: Few-cycle laser pulse generation and its applications, pp. 73-136. Springer (2004)
[28] Kato, T., Perturbation theory for linear operators (2013), Berlin: Springer, Berlin
[29] Kaup, D., Perturbation theory for solitons in optical fibers, Phys. Rev. A, 42, 9, 5689-5694 (1990)
[30] Korotyaev, E., Spectrum of the monodromy operator of the Schrödinger operator with a potential which is periodic with respect to time, Journal of Soviet Mathematics, 21, 5, 715-717 (1983) · Zbl 0509.35063
[31] Korotyaev, EL, On the eigenfunctions of the monodromy operator of the Schrödinger operator with a time-periodic potential, Mathematics of the USSR-Sbornik, 52, 2, 423 (1985) · Zbl 0582.35030
[32] Kuchment, PA, Floquet theory for partial differential equations (2012), Basel: Birkhäuser, Basel · Zbl 0789.35002
[33] Kutz, JN, Mode-locked soliton lasers, SIAM Review, 48, 4, 629-678 (2006) · Zbl 1121.35130
[34] Kuznetsov, EA, Solitons in a parametrically unstable plasma, Soviet Physics Doklady, 22, 507-508 (1977)
[35] Ma, YC, The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math., 60, 1, 43-58 (1979) · Zbl 0412.35028
[36] Meyer, CD, Matrix analysis and applied linear algebra (2000), Philadelphia: SIAM, Philadelphia
[37] Mollenauer, LF; Stolen, RH, The soliton laser, Opt. Lett., 9, 1, 13-15 (1984)
[38] Muñoz, C., Instability in nonlinear Schrödinger breathers, Proyecciones (Antofagasta), 36, 4, 653-683 (2017) · Zbl 1391.35358
[39] Pazy, A., Semigroups of linear operators and applications to partial differential equations (2012), Berlin: Springer, Berlin · Zbl 0516.47023
[40] Reed, M., Simon, B.: Methods of mathematical physics: Analysis of operators, volume IV (1980) · Zbl 0459.46001
[41] Regelskis, K.; Želudevičius, J.; Viskontas, K.; Račiukaitis, G., Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering, Opt. Lett., 40, 22, 5255-5258 (2015)
[42] Renninger, W.; Chong, A.; Wise, F., Dissipative solitons in normal-dispersion fiber lasers, Phys. Rev. A, 77, 2, 023814 (2008)
[43] Sandstede, B.: Stability of travelling waves. In: Handbook of dynamical systems, vol. 2, pp. 983-1055. Elsevier (2002) · Zbl 1056.35022
[44] Sandstede, B.; Scheel, A., On the structure of spectra of modulated travelling waves, Mathematische Nachrichten, 232, 1, 39-93 (2001) · Zbl 0994.35025
[45] Shen, Y.; Zweck, J.; Wang, S.; Menyuk, C., Spectra of short pulse solutions of the cubic-quintic complex Ginzburg-Landau equation near zero dispersion, Stud. Appl. Math., 137, 2, 238-255 (2016) · Zbl 1366.35176
[46] Sidorenko, P.; Fu, W.; Wright, LG; Olivier, M.; Wise, FW, Self-seeded, multi-megawatt, Mamyshev oscillator, Opt. Lett., 43, 11, 2672-2675 (2018)
[47] Tamura, K.; Ippen, E.; Haus, H.; Nelson, L., 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser, Opt. Lett., 18, 13, 1080-1082 (1993)
[48] Tamura, K.; Nelson, L.; Haus, H.; Ippen, E., Soliton versus nonsoliton operation of fiber ring lasers, Appl. Phys. Lett., 64, 2, 149-151 (1994)
[49] Tsoy, E.; Akhmediev, N., Bifurcations from stationary to pulsating solitons in the cubic-quintic complex Ginzburg-Landau equation, Phys. Lett. A, 343, 6, 417-422 (2005) · Zbl 1194.35445
[50] Tsoy, E.; Ankiewicz, A.; Akhmediev, N., Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation, Phys. Rev. E, 73, 3, 036621 (2006)
[51] Wilkening, J.: Harmonic stability of standing water waves (2019). Preprint arXiv:1903.05621 · Zbl 1433.76021
[52] Zweck, J.; Menyuk, CR, Computation of the timing jitter, phase jitter, and linewidth of a similariton laser, J. Opt. Soc. Amer. B, 35, 5, 1200-1210 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.