×

Time-harmonic acoustic scattering from locally perturbed periodic curves. (English) Zbl 1479.78013

MSC:

78A45 Diffraction, scattering
76Q05 Hydro- and aero-acoustics
74J20 Wave scattering in solid mechanics
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J08 Green’s functions for elliptic equations
35J50 Variational methods for elliptic systems
35P25 Scattering theory for PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] H. Ammari and G. Bao, Maxwell’s equations in a perturbed periodic structure, Adv. Comput. Math., 16 (2002), pp. 99-112. · Zbl 0991.35091
[2] H. Ammari, G. Bao, and A. Wood, An integral equation method for the electromagnetic scattering from cavities, Math. Methods Appl. Sci., 23 (2000), pp. 1057-1072. · Zbl 0991.78012
[3] T. Arens and T. Hohage, On radiation conditions for rough surface scattering problems, IMA J. Appl. Math., 70 (2005), pp. 839-847. · Zbl 1100.35101
[4] G. Bao, G. Hu, and T. Yin, Time-harmonic acoustic scattering from locally perturbed half-planes, SIAM J. Appl. Math., 78 (2018), pp. 2672-2691. · Zbl 06958369
[5] A. S. Bonnet-Bendhia and K. Ramdani, Diffraction by an acoustic grating perturbed by a bounded obstacle, Adv. Comput. Math., 16 (2002), pp. 113-138. · Zbl 0992.78019
[6] A. S. Bonnet-Bendhia and P. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem, Math. Methods Appl. Sci., 17 (1994), pp. 2305-338. · Zbl 0817.35109
[7] S. N. Chandler-Wilde, Boundary value problems for the Helmholtz equation in a half-plane, in Proceedings of the 3rd International Conference on Mathematical and Numerical Aspects of Wave Propagation, Mandelieu-La Napoule, France, SIAM, Philadelphia, 1995, pp. 188-197. · Zbl 0870.35031
[8] S. N. Chandler-Wilde and D. C. Hothersall, Efficient calculation of the Green function for acoustic propagation above a homogeneous impedance plane, J. Sound Vib., 180 (1995), pp. 2705-724. · Zbl 1237.76166
[9] S. N. Chandler-Wilde, The impedance boundary value problem for the Helmholtz equation in a half-plane, Math. Methods Appl. Sci., 20 (1997), pp. 813-840. · Zbl 0889.35024
[10] S. N. Chandler-Wilde and J. Elschner, Variational approach in weighted Sobolev spaces to scattering by unbounded rough surfaces, SIAM J. Math. Anal., 42 (2010), pp. 2554-2580. · Zbl 1241.35044
[11] S. N. Chandler-Wilde and P. Monk, Existence, uniqueness and variational methods for scattering by unbounded rough surfaces, SIAM J. Math. Anal., 37 (2005), pp. 598-618. · Zbl 1127.35030
[12] S. N. Chandler-Wilde, C.R. Ross, and B. Zhang, Scattering by rough surfaces, in Proceedings of the Fourth International Conference on Mathematical and Numerical Aspects of Wave Propagation (Golden, CO, 1998), SIAM, Philadelphia, PA, 1998, pp. 164-168. · Zbl 0937.35119
[13] S. N. Chandler-Wilde, C. R. Ross, and B. Zhang, Scattering by infinite one-dimensional rough surfaces, Proc. A, 455 (1999), pp. 3767-3787. · Zbl 0963.78014
[14] S. N. Chandler-Wilde and B. Zhang, Scattering of electromagnetic waves by rough surfaces and inhomogeneous layers, SIAM J. Math. Anal., 30 (1999), pp. 559-583. · Zbl 0920.35104
[15] S. N. Chandler-Wilde and B. Zhang, Electromagnetic scattering by an inhomogeneous conducting or dielectric layer on a perfectly conducting plate, Proc. A, 454 (1998), pp. 519-542. · Zbl 0922.35174
[16] J. Coatleven, Helmholtz equation in periodic media with a line defect, J. Comput. Phys., 231 (2012), pp. 1675-1704. · Zbl 1242.65228
[17] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed., Appl. Math. Sci. 93, Springer, Berlin, 2013. · Zbl 1266.35121
[18] J. A. DeSanto and P. A. Martin, On the derivation of boundary integral equations for scattering by an infinite one-dimensional rough surface, J. Acoust. Soc. Amer., 102 (1997), pp. 67-77.
[19] J. Elschner and G. Schmidt, Diffraction in periodic structures and optimal design of binary gratings I. Direct problems and gradient formulas, Math. Methods Appl. Sci., 21 (1998), pp. 1297-1342. · Zbl 0913.65121
[20] J. Elschner and M. Yamamoto, An inverse problem in periodic diffractive optics: Reconstruction of Lipschitz grating profiles, Appl. Anal., 81 (2002), pp. 1307-1328. · Zbl 1028.78008
[21] S. Fliss and P. Joly, Exact boundary conditions for time-harmonic wave propagation in locally perturbed periodic media, Appl. Numer. Math., 59 (2009), pp. 2155-2178. · Zbl 1165.78311
[22] S. Fliss and P. Joly, Solutions of the time-harmonic wave equation in periodic waveguides: Asymptotic behavior and radiation condition, Arch. Ration. Mech. Anal., 219 (2016), pp. 349-386. · Zbl 1333.35260
[23] V. Yu. Gotlib, On solutions of the Helmholtz equation that are concentrated near a plane periodic boundary, J. Math. Sci. (N. Y.), 102 (2002), pp. 4188-4194. · Zbl 1071.35512
[24] H. Haddar and T. P. Nguyen, A volume integral method for solving scattering problems from locally perturbed infinite periodic layers, Appl. Anal., 96 (2017), pp. 130-158. · Zbl 1364.65267
[25] Z. Hu and Y. Y. Lu, Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps, Opt. Exp., 16 (2008), pp. 17383-17399.
[26] G. Hu and A. Rathsfeld, Scattering of time-harmonic electromagnetic plane waves by perfectly conducting diffraction gratings, IMA J. Appl. Math., 80 (2015), pp. 508-532. · Zbl 1328.35232
[27] P. Joly, J.R. Li, and S. Fliss, Exact boundary conditions for periodic waveguides containing a local perturbation, Commun. Comput. Phys., 1 (2006), pp. 945-973. · Zbl 1125.78008
[28] I. V. Kamotski and S. A. Nazarov, The augmented scattering matrix and exponentially decaying solutions of an elliptic problem in a cylindrical domain, J. Math. Sci., 111 (2002), pp. 3657-3666.
[29] A. Kirsch, Diffraction by periodic structures, in Proceedings of the Lapland Conference on Inverse Problems, L. Päivärinta and E. Somersalo, eds., Springer, Berlin, 1993, pp. 87-102. · Zbl 0924.35013
[30] A. Kirsch, Scattering by a periodic tube in \(\mathbb{R}^3\): Part I. The limiting absorption principle, Inverse Problems, 35 (2019), 104004, https://doi.org/10.1088/1361-6420/ab2e31. · Zbl 1461.35177
[31] A. Kirsch, Scattering by a periodic tube in \(\mathbb{R}^3\): Part II. A radiation condition, Inverse Problems, 35 (2019), 104005 https://doi.org/10.1088/1361-6420/ab2e27. · Zbl 1426.78016
[32] A. Kirsch and A. Lechleiter, The limiting absorption principle and a radiation condition for the scattering by a periodic layer, SIAM J. Math. Anal., 50 (2018), pp. 2536-2565. · Zbl 1454.35246
[33] A. Lechleiter and R. Zhang, A convergent numerical scheme for scattering of aperiodic waves from periodic surfaces based on the Floquet-Bloch transform, SIAM J. Numer. Anal., 55 (2017), pp. 713-736. · Zbl 1375.35107
[34] A. Lechleiter and R. Zhang, A Floquet-Bloch transform based numerical method for scattering from locally perturbed periodic surfaces, SIAM J. Sci. Comput., 39 (2017), B819-B839. · Zbl 1380.35070
[35] A. Lechleiter and R. Zhang, Reconstruction of local perturbations in periodic surfaces, Inverse Problems, 34 (2018), 035006. · Zbl 1457.65169
[36] C. D. Lines, Inverse Scattering by Rough Surfaces, Ph.D. thesis, Dept. of Math. Sciences, Brunel University, London, 2003. · Zbl 1046.78008
[37] W. Lu and Y. Y. Lu, High order integral equation method for diffraction gratings, J. Opt. Soc. Am. A, 29 (2012), pp. 734-740.
[38] W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, UK, 2010. · Zbl 0948.35001
[39] A. Meier, T. Arens, S. N. Chandler-Wilde, and A. Kirsch, A Nyström method for a class of integral equations on the real line with applications to scattering by diffraction gratings and rough surfaces, J. Integral Equations Appl., 12 (2000), pp. 281-321. · Zbl 1170.78365
[40] D. Natroshvili and S. N. Chandler-Wilde, The Dirichlet metaharmonic Green’s function for unbounded regions, Mem. Differ. Equ. Math. Phys., 30 (2003), pp. 51-103. · Zbl 1055.31002
[41] N. C. Nedelec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell equation, SIAM J. Math. Anal. 22 (1991), pp. 1679-1701. · Zbl 0756.35004
[42] R. Petit, Electromagnetic Theory of Gratings, Topics Current Phys. 22, Springer, Berlin, 1980.
[43] A. Rathsfeld, G. Schmidt, and B. H. Kleemann, On a fast integral equation method for diffraction gratings, Commun. Comput. Phys., 1 (2006), pp. 984-1009. · Zbl 1116.78032
[44] J. Sun and C. Zheng, Numerical scattering analysis of TE plane waves by a metallic diffraction grating with local defects, J. Opt. Soc. Am. A, 26 (2009), pp. 156-162.
[45] A. Wood, Analysis of electromagnetic scattering from an overfilled cavity in the ground plane, J. Comput. Phys., 215 (2006), pp. 630-641. · Zbl 1100.78014
[46] Y. Wu and Y. Y. Lu, Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method, J. Opt. Soc. Am. A, 26 (2009), pp. 2444-2451.
[47] Y. Xu, Radiation condition and scattering problem for time-harmonic acoustic waves in a stratified medium with a nonstratified inhomogeneity, IMA J. Appl. Math, 54 (1995), pp. 9-29. · Zbl 0833.76070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.