×

Stability for an inverse source problem of the biharmonic operator. (English) Zbl 1480.35407

MSC:

35R30 Inverse problems for PDEs
35B35 Stability in context of PDEs
35J30 Higher-order elliptic equations
35P25 Scattering theory for PDEs
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory

Citations:

Zbl 1014.58015
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] T. Aktosun and V. Papanicolaou, Time evolution of the scattering data for a fourth-order linear differential operator, Inverse Problems, 24 (2008), 055013. · Zbl 1231.34153
[2] Y. Assylbekov, Inverse problems for the perturbed polyharmonic operator with coefficients in Sobolev spaces with non-positive order, Inverse Problems, 32 (2016), 105009. · Zbl 1369.35112
[3] G. Bao, P. Li, J. Lin, and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001. · Zbl 1332.78019
[4] G. Bao, P. Li, and Y. Zhao, Stability for the inverse source problems in elastic and electromagnetic waves, J. Math. Pures Appl., 134 (2020), pp. 122-178. · Zbl 1433.35376
[5] G. Bao, J. Lin, and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), pp. 3443-3465. · Zbl 1205.35336
[6] J. Cheng, V. Isakov, and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), pp. 4786-4804. · Zbl 1401.35339
[7] A. Choudhury and H. Heck, Stability of the inverse boundary value problem for the biharmonic operator: Logarithmic estimates, J. Inverse Ill-Posed Probl., 25 (2017), pp. 251-263. · Zbl 1368.31003
[8] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences 93, Springer-Verlag, Berlin, 1998. · Zbl 0893.35138
[9] M. Entekhabi and V. Isakov, On increasing stability in the two dimensional inverse source scattering problem with many frequencies, Inverse Problems, 34 (2018), 055005. · Zbl 06897203
[10] M. Entekhabi and V. Isakov, Increasing stability in acoustic and elastic inverse source problems, SIAM J. Math. Anal., 52 (2020), pp. 5232-5256. · Zbl 1475.35413
[11] H. Feng, A. Soffer, Z. Wu, and X. Yao, Decay estimates for higher-order elliptic operators, Trans. Amer. Math. Soc., 373 (2020), pp. 2805-2859. · Zbl 1440.35054
[12] F. Gazzola, H.-C. Grunau, and G. Sweers, Polyharmonic Boundary Value Problems, Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. · Zbl 1239.35002
[13] Y. Gong and X. Xu, Inverse random source problem for biharmonic equation in two dimensions, Inverse Probl. Imaging, 13 (2019), pp. 635-652. · Zbl 1471.45013
[14] A. Hassell and T. Tao, Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions, Math. Res. Lett., 9 (2012), pp. 289-305. · Zbl 1014.58015
[15] V. Isakov, Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations, 92 (1991), pp. 305-316. · Zbl 0728.35141
[16] K. Iwasaki, Scattering theory for 4th order differential operators: I, Jpn. J. Math., Vol. I, 14 (1988), pp. 1-57. · Zbl 0663.34020
[17] K. Iwasaki, Scattering theory for 4th order differential operators: II, Jpn. J. Math., Vol. II, 14 (1988), pp. 59-96. · Zbl 0663.34021
[18] K. Krupchyk, M. Lassas, and G. Uhlmann, Inverse boundary value problems for the perturbed polyharmonic operator, Trans. Amer. Math. Soc., 366 (2014), pp. 95-112. · Zbl 1317.35295
[19] M. Lassas, K. Krupchyk, and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, J. Funct. Anal., 262 (2012), pp. 1781-1801. · Zbl 1239.35184
[20] P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Probl. Imaging, 11 (2017), pp. 745-759. · Zbl 1366.35241
[21] P. Li, J. Zhai, and Y. Zhao, Stability for the acoustic inverse source problem in inhomogeneous media, SIAM J. Appl. Math., 80 (2020), pp. 2547-2559. · Zbl 1462.35466
[22] S. Mayboroda and V. Maz’ya, Boundedness of the gradient of a solution and Wiener test of order one for the biharmonic equation, Invent. Math., 175 (2009), pp. 287-334. · Zbl 1166.35014
[23] N. V. Movchan, R. C. McPhedran, A. B. Movchan, and C. G. Poulton, Wave scattering by platonic grating stacks, Proc. R. Soc. A, 465 (2009), pp. 3383-3400. · Zbl 1186.74059
[24] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993. · Zbl 0821.42001
[25] T. Tyni, M. Harju, and V. Serov, Recovery of singularities in a fourth-order operator on the line from limited data, Inverse Problems, 32 (2016), 075001. · Zbl 1381.65056
[26] T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Probl. Imaging, 12 (2018), pp. 205-227. · Zbl 06936142
[27] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linear partieller Differentialgleichungen, Math. Ann., 71 (1911), pp. 441-479.
[28] Y. Yang, Determining the first order perturbation of a bi-harmonic operator on bounded and unbounded domains from partial data, J. Differential Equations, 257 (2014), pp. 3607-3639. · Zbl 1298.35255
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.