×

Three-dimensional Cartesian grid method for the simulations of flows with shock waves in the domains with varying boundaries. (English) Zbl 07446892

MSC:

76-XX Fluid mechanics
74-XX Mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bennett, W. P., Nikiforakis, N. and Klein, R. [2018] “ A moving boundary flux stabilization method for Cartesian cut-cell grids using directional operator splitting,” J. Comput. Phys.368, 333-358. · Zbl 1392.76034
[2] Berger, M. J. and Helzel, C. [2012] “ A simplified h-box method for embedded boundary grids,” SIAM J. Sci. Comput.34(2), A861-A888. · Zbl 1252.65149
[3] Boiko, V. M., Fedorov, A. V., Fomin, V. M., Papyrin, A. N. and Soloukhin, R. I. [1983] “ Ignition of small particles behind shock waves,” Shock Wave, Explos. Detonations.87, 71-87.
[4] Chertock, A. and Kurganov, A. [2008] “ A simple Eulerian finite-volume method for compressible fluids in domains with moving boundaries,” Comm. Math. Sci.6(3), 531-556. · Zbl 1149.76032
[5] Colella, P., Graves, D. T., Keen, B. J. and Modiano, D. [2006] “ A Cartesian grid embedded boundary method for hyperbolic conservation laws,” J. Comput. Phys.211(1), 347-366. · Zbl 1120.65324
[6] Cui, Z., Yang, Z. and Jiang, H.-Z. [2017] “ A sharp-interface immersed boundary method for simulating incompressible flows with arbitrarily deforming smooth boundaries,” Int. J. Comput. Meth.14(2), 1750080. · Zbl 1404.76160
[7] Drikakis, D., Ofengeim, D., Timofeev, E. and Voionovich, P. [1997] “ Computation of non-stationary shock-wave/cylinder interaction using adaptive-grid methods,” J. Fluids Struct.11, 665-691.
[8] Godunov, S. K., Zabrodin, A. V., Ivanov, M. Ya., Kraiko, A. N. and Prokopov, G. P. [1976] Numerical Solving of Multidimensional Problems of Gas Dynamics, Nauka, Moscow.
[9] Godunov, S. K., Manuzina, Y. D. and Nazer’eva, M. A. [2011] “ Experimental analysis of convergence of the numerical solution to a generalized solution in fluid dynamics,” Comput. Math. Math. Phys.51, 88-95.
[10] Hartmann, D., Meinke, M. and Schröder, W. [2011] “ A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids,” Comput. Meth. Appl. Mech. Eng.200, 1038-1052. · Zbl 1225.76211
[11] Hu, X. Y., Khoo, B. C., Adams, N. S. and Huang, F. L. [2006] “ A conservative interface method for compressible flows,” J. Comput. Phys.219, 553-578. · Zbl 1102.76038
[12] Klein, R., Bates, K. R. and Nikiforakis, N. [2009] “ Well-balanced compressible cut-cell simulation of atmospheric flow,” Philos. Trans. Royal Soc. A. Math, Phys. Eng. Sci.367, 4559-4575. · Zbl 1192.86013
[13] Ling, Y., Wagner, J. L., Beresh, S. J., Kearney, S. P. and Balachandar, S. [2012] “ Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments,” Phys. Fluids.24, 113301.
[14] Mehta, Y., Neal, C., Salari, K., Jackson, T. L., Balachandar, S. and Thakur, S. [2018] “ Propagation of a strong shock over a random bed of spherical particles,” J. Fluid Mech.839, 157-197. · Zbl 1419.76679
[15] Mittal, R. and Iaccarino, G. [2005] “ Immersed boundary methods,” Annu. Rev. Fluid Mech.37, 239-261. · Zbl 1117.76049
[16] Osnes, A. N., Vartdal, M., Omang, M. G. and Reif, B. A. P. [2019] “ Computational analysis of shock-induced flow through stationary particle clouds,” Int. J. Multiphase Flow.114, 268-286.
[17] Pan, D., Deng, J., Shao, X. and Liu, Z. [2016] “ On the propulsive performance of tandem flapping wings with a modified immersed boundary methods,” Int. J. Comp. Meth.13(5), 1650025. · Zbl 1359.76363
[18] Pandolfi, M. and D’Ambrosio, D. [2001] “ Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon,” J. Comput. Phys.166(2), 271-301. · Zbl 0990.76051
[19] Pember, R. B., Bell, J. B., Colella, P., Crutchfield, W. Y. and Welcome, M. L. [1995] “ An adaptive Cartesian grid method for unsteady compressible flow in irregular regions,” J. Comput. Phys.120(2), 278-304. · Zbl 0842.76056
[20] Peskin, C. S. [1982] “ The fluid dynamics of heart valves: experimental, theoretical, and computational methods,” Annu. Rev. Fluid Mech.14, 235-259. · Zbl 0488.76129
[21] Pogorelov, A., Meinke, M. and Schröder, W. [2015] “ Cut-cell method based large-eddy simulation of tip-leakage flow,” Phys. Fluids.27(7), 075106.
[22] Saleel, C. A., Shaija, A. and Jayaraj, S. [2013] “ Computational simulation of fluid flow over a triangular step using immersed boundary method,” Int. J. Comput. Meth.10(4), 1350016. · Zbl 1359.76085
[23] Sen, O., Gaul, N. J., Choi, K. K., Jacobs, G. and Udaykumar, H. S. [2017] “ Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles,” J. Comput. Phys.336, 235-260.
[24] Shimura, K. and Matsuo, A. [2018] “ Two-dimensional CFD-DEM simulation of vertical shock wave-induced dust lifting processes,” Shock Waves, 28, 1285-1297.
[25] Sidorenko, D. A. and Utkin, P. S. [2018] “ Two-dimensional gas-dynamic modeling of the interaction of a shock wave with beds of granular media,” Russ. J. Phys. Chem. B.12(5), 869-874.
[26] Sidorenko, D. A., Utkin, P. S. and Boiko, V. M. [2019] “ Dynamics of motion of a pair of particles in a supersonic flow,” Proc. 32nd Int. Symp. Shock Waves.14-19 July 2019, Singapore, , OR-15-0049, pp. 1753-1760.
[27] Sidorenko, D. A. and Utkin, P. S. [2019] “ Numerical modeling of the relaxation of a body behind the transmitted shock wave,” Math. Models Comput. Simul.11(4), 509-517.
[28] Steger, J. L. and Warming, R. F. [1981] “ Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods,” J. Comput. Phys.40(2), 263-293. · Zbl 0468.76066
[29] Sung, H.-G., Jang, J.-S. and Roh, T.-S. [2013] “ Application of Eulerian-Lagrangian approach to gas-solid flows in interior ballistics,” J. Appl. Mech.80, 031407.
[30] Tanno, H., Itoh, K., Saito, T., Abe, A. and Takayama, K. [2003] “ Interaction of a shock with a sphere suspended in a vertical shock tube,” Shock Waves13, 191-200.
[31] Utkin, P. S. [2019] “ Numerical simulation of shock wave – dense particles cloud interaction using Godunov solver for Baer-Nunziato equations,” Int. J. Num. Meth. Heat Fluid Flow.29(9), 3225-3241.
[32] Wagner, J. L., Beresh, S. J., Kearney, S. P., Trott, W. M., Cataneda, J. N., Pruett, B. O. and Baer, M. R. [2012] “ A multiphase shock tube for shock wave interactions with dense particle fields,” Exp Fluids.52, 1507-1517.
[33] Wu, W. B., Zhang, A. M., Liu, Y. L. and Liu, M. B. [2020] “ Interaction between shock wave and a movable sphere with cavitation effects in shallow water,” Phys. Fluids.32, 016103.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.