×

Generalised Serre-Green-Naghdi equations for open channel and for natural river hydraulics. (English) Zbl 07446496

Summary: In this paper, we present a new non-linear dispersive model for open channel and river flows. These equations are the second-order shallow water approximation of the section-averaged (three-dimensional) incompressible and irrotational Euler system. This new asymptotic model generalises the well-known one-dimensional Serre-Green-Naghdi (SGN) equations for rectangular section on uneven bottom to arbitrary channel/river section.

MSC:

35Qxx Partial differential equations of mathematical physics and other areas of application
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] E. Barthélemy, Nonlinear shallow water theories for coastal waves,Surveys in Geophysics25(3-4) (2004), 315-337. doi:10.1007/s10712-003-1281-7.
[2] D.J. Bayraktar and S.L. Beji, A new numerical scheme for improved Boussinesq equations with surface pressure, in: Sustainable Maritime Transportation and Exploitation of Sea Resources, Vol. 847, 2011, pp. 847-854, ROUTLEDGE in association with GSE Research. doi:10.1201/b11810-127.
[3] T.B. Benjamin, The stability of solitary waves,Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences328(1573) (1972), 153-183. doi:10.1098/rspa.1972.0074.
[4] C. Bourdarias, M. Ersoy and S. Gerbi, A mathematical model for unsteady mixed flows in closed water pipes,Science China Mathematics55(2) (2012), 221-244. doi:10.1007/s11425-011-4353-z. · Zbl 1387.35484
[5] J. Boussinesq, Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire,Comptes Rendus Acad. Sci (Paris)72(1871), 755-759. · JFM 03.0486.01
[6] R. Cienfuegos, E. Barthélemy and P. Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part ii: Boundary conditions and validation,International Journal for Numerical Methods in Fluids53(9) (2007), 1423-1455. doi:10.1002/fld.1359. · Zbl 1370.76090
[7] D. Clamond, D. Dutykh and D. Mitsotakis, Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics,Communications in Nonlinear Science and Numerical Simulation45(2017), 245-257. doi:10.1016/ j.cnsns.2016.10.009. · Zbl 1459.76020
[8] A.-J.-C.B. de Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit,Comptes rendus hebdomadaires des séances de l’Académie des sciences73(1871), 147-154. · JFM 03.0482.04
[9] A. Decoene, L. Bonaventura, E. Miglio and F. Saleri, Asymptotic derivation of the section-averaged shallow water equations for natural river hydraulics,Mathematical Models and Methods in Applied Sciences19(03) (2009), 387-417. doi:10. 1142/S0218202509003474. · Zbl 1207.35092
[10] M. Ersoy, Modeling, mathematical and numerical analysis of various compressible or incompressible flows in thin layer. Theses, 2010.
[11] M. Ersoy, Dimension reduction for incompressible pipe and open channel flow including friction, in:Conference Applications of Mathematics 2015, in Honor of the 90th Birthday of Ivo Babuška and 85th Birthday of Milan Práger and Emil Vitásek, J. Brandts, S. Korotov, M. Krizek, K. Segeth, J. Sistek and T. Vejchodsky, eds, Prague, France, 2015, pp. 17-33. · Zbl 1363.76004
[12] M. Ersoy, O. Lakkis and P. Townsend, A Saint-Venant shallow water model for overland flows with precipitation and recharge, 2016, working paper or preprint.
[13] M. Esteves, X. Faucher, S. Galle and M. Vauclin, Overland flow and infiltration modelling for small plots during unsteady rain: Numerical results versus observed values,Journal of hydrology228(3) (2000), 265-282. doi:10.1016/S00221694(00)00155-4.
[14] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Cont. Dyn. Syst. Ser. B1(1) (2001), 89-102. · Zbl 0997.76023
[15] N. Gouta and F. Maurel, A finite volume solver for 1d shallow-water equations applied to an actual river,International Journal for Numerical Methods in Fluids38(1) (2002), 1-19. doi:10.1002/fld.201. · Zbl 1115.76355
[16] R. Grace and P.S. Eagleson, The modeling of overland flow,Water Resources Research2(3) (1966), 393-403. doi:10. 1029/WR002i003p00393.
[17] A.E. Green and P.M. Naghdi, A derivation of equations for wave propagation in water of variable depth,Journal of Fluid Mechanics78(02) (1976), 237-246. doi:10.1017/S0022112076002425. · Zbl 0351.76014
[18] D.J. Korteweg and G. De Vries, Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39(240) (1895), 422-443. doi:10.1080/14786449508620739. · JFM 26.0881.02
[19] D. Lannes,The Water Waves Problem: Mathematical Analysis and Asymptotics, Vol. 188, American Mathematical Soc., 2013. · Zbl 1410.35003
[20] D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation,Physics of Fluids (1994-present)21(1) (2009), 016601. · Zbl 1183.76294
[21] D. Lannes and F. Marche, A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations,Journal of Computational Physics282(2015), 238-268. doi:10.1016/j.jcp.2014.11.016. · Zbl 1351.76114
[22] P.A. Madsen and O.R. Sørensen, A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry,Coastal engineering18(3-4) (1992), 183-204. doi:10.1016/03783839(92)90019-Q.
[23] O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation,Journal of waterway, port, coastal, and ocean engineering119(6) (1993), 618-638. doi:10.1061/(ASCE)0733-950X(1993)119:6(618).
[24] D. Peregrine, Calculations of the development of an undular bore,Journal of Fluid Mechanics25(2) (1966), 321-330. doi:10.1017/S0022112066001678.
[25] D.H. Peregrine, Long waves on a beach,Journal of fluid mechanics27(4) (1967), 815-827. doi:10.1017/ S0022112067002605. · Zbl 0163.21105
[26] K. Pons, Modélisation des tsunamis: Propagation et impact, PhD thesis, Université de Toulon, 2018.
[27] G. Richard and S. Gavrilyuk, Modelling turbulence generation in solitary waves on shear shallow water flows,Journal of Fluid Mechanics773(2015), 49-74. doi:10.1017/jfm.2015.236. · Zbl 1331.76034
[28] M. Rousseau, O. Cerdan, A. Ern, O. Le Maitre and P. Sochala, Study of overland flow with uncertain infiltration using stochastic tools,Advances in Water Resources38(2012), 1-12. doi:10.1016/j.advwatres.2011.12.004.
[29] H.A. Schäffer and P.A. Madsen, Further enhancements of Boussinesq-type equations,Coastal Engineering26(1-2) (1995), 1-14. doi:10.1016/0378-3839(95)00017-2.
[30] F.J. Seabra-Santos, D.P. Renouard and A.M. Temperville, Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle,Journal of Fluid Mechanics176(1987), 117-134. doi:10.1017/ S0022112087000594.
[31] F. Serre, Contribution à l’étude des écoulements permanents et variables dans les canaux,La Houille Blanche6(1953), 830-872. doi:10.1051/lhb/1953058.
[32] C.H. Su and C.S. Gardner, Korteweg-de Vries equation and generalizations. iii. Derivation of the Korteweg-de Vries equation and Burgers equation,Journal of Mathematical Physics10(3) (1969), 536-539. doi:10.1063/1.1664873. · Zbl 0283.35020
[33] Y. Tsuji, T. Yanuma, I. Murata and C. Fujiwara, Tsunami ascending in rivers as an undular bore,Natural Hazards4(2-3) (1991), 257-266. doi:10.1007/BF00162791.
[34] G. Wei, J.T. Kirby, S.T. Grilli and R. Subramanya, A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves,Journal of Fluid Mechanics294(1995), 71-92. doi:10.1017/S0022112095002813. · Zbl 0859.76009
[35] S. Weill, E. Mouche and J. Patin, A generalized Richards equation for surface/subsurface flow modelling,Journal of Hydrology366(1) (2009), 9-20. doi:10.1016/j.jhydrol.2008.12.007.
[36] J.M. Witting, A unified model for the evolution nonlinear water waves,Journal of Computational Physics56(2) (1984), 203-236. doi:10.1016/0021-9991(84)90092-5. · Zbl 0557.76026
[37] D.A. Woolhiser and J.A. Liggett, Unsteady, one-dimensional flow over a plane – the rising hydrograph,Water Resources Research3(3) (1967), 753-771. doi:10.1029/WR003i003p00753.
[38] W. Zhang and T.W. Cundy, Modeling of two-dimensional overland flow,Water Resources Research25(9) (1989), 2019- 2035. doi:10.1029/WR025i009p02019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.