Theories for incompressible rods: a rigorous derivation via \(\Gamma\)-convergence. (English) Zbl 07446485

Summary: We use variational convergence to derive a hierarchy of one-dimensional rod theories, starting out from three-dimensional models in nonlinear elasticity subject to local volume-preservation. The densities of the resulting \(\Gamma\)-limits are determined by minimization problems with a trace constraint that arises from the linearization of the determinant condition of incompressibility. While the proofs of the lower bounds rely on suitable constraint regularization, the upper bounds require a careful, explicit construction of locally volume-preserving recovery sequences. After decoupling the cross-section variables with the help of divergence-free extensions, we apply an inner perturbation argument to enforce the desired non-convex determinant constraint. To illustrate our findings, we discuss the special case of isotropic materials.


35Qxx Partial differential equations of mathematical physics and other areas of application
Full Text: DOI arXiv


[2] E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string,J. Elasticity 25(2) (1991), 137-148. doi:10.1007/BF00042462. · Zbl 0734.73094
[3] J. Adams, S. Conti and A. DeSimone, Soft elasticity and microstructure in smectic C elastomers,Contin. Mech. Thermodyn.18(6) (2007), 319-334. doi:10.1007/s00161-006-0031-8. · Zbl 1170.76303
[4] M. Amabili, I.D. Breslavsky and J.N. Reddy, Nonlinear higher-order shell theory for incompressible biological hyperelastic materials,Comput. Methods Appl. Mech. Engrg.346(2019), 841-861. doi:10.1016/j.cma.2018.09.023. · Zbl 1440.74063
[5] H. Attouch, Variational convergence for functions and operators,Applicable Mathematics Series. Pitman (Advanced Publishing Program)(1984). · Zbl 0561.49012
[6] S. Bartels, finite element simulation of nonlinear bending models for thin elastic rods and plates, in:Geometric Partial Differential Equations - Part I, A. Bonito and R.H. Nochetto, eds, Handbook of Numerical Analysis, Vol. 21, Elsevier, 2020, pp. 221-273, Chapter 3. doi:10.1016/bs.hna.2019.06.003. · Zbl 1455.35255
[7] K. Bhattacharya, M. Lewicka and M. Schäffner, Plates with incompatible prestrain,Arch. Ration. Mech. Anal.221(1) (2016), 143-181. doi:10.1007/s00205-015-0958-7. · Zbl 1382.74081
[8] A. Braides,-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications., Vol. 22, Oxford University Press, Oxford, 2002. · Zbl 1198.49001
[9] M. Bukal, M. Pawelczyk and I. Velˇci´c, Derivation of homogenized Euler-Lagrange equations for von Kármán rods, J. Differential Equations262(11) (2017), 5565-5605. doi:10.1016/j.jde.2017.02.009. · Zbl 1358.74008
[10] M. Chermisi and H. Li, The von Kármán theory for incompressible elastic shells,Calc. Var. Partial Differential Equations 48(1-2) (2013), 185-209. doi:10.1007/s00526-012-0549-5. · Zbl 1314.74043
[11] P. Ciarlet,Mathematical Elasticity: Theory of Plates. Developments in Aquaculture and Fisheries Science, North-Holland, 1997.
[12] M. Cicalese, M. Ruf and F. Solombrino, Hemihelical local minimizers in prestrained elastic bi-strips,Z. Angew. Math. Phys.68(6):Art(2017), 122, 18. · Zbl 1395.74075
[13] M. Cicalese, M. Ruf and F. Solombrino, On global and local minimizers of prestrained thin elastic rods,Calc. Var. Partial Differential Equations56(4):Art(2017), 115, 34. · Zbl 1371.74164
[14] S. Conti and G. Dolzmann, Derivation of elastic theories for thin sheets and the constraint of incompressibility, in:Analysis, Modeling and Simulation of Multiscale Problems, Springer, Berlin, 2006, pp. 225-247. doi:10.1007/3-540-356576_9. · Zbl 1366.74043
[15] S. Conti and G. Dolzmann,-convergence for incompressible elastic plates,Calc. Var. Partial Differential Equations 34(4) (2009), 531-551. doi:10.1007/s00526-008-0194-1. · Zbl 1161.74038
[16] S. Conti and G. Dolzmann, On the theory of relaxation in nonlinear elasticity with constraints on the determinant,Arch. Ration. Mech. Anal.217(2) (2015), 413-437. doi:10.1007/s00205-014-0835-9. · Zbl 1323.49010
[17] G. Dal Maso,An Introduction to-convergence, Progress in Nonlinear Differential Equations and their Applications., Vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993. · Zbl 0816.49001
[18] E. Davoli and M.G. Mora, Convergence of equilibria of thin elastic rods under physical growth conditions for the energy density,Proc. Roy. Soc. Edinburgh Sect. A142(3) (2012), 501-524. doi:10.1017/S0308210510001563. · Zbl 1317.74051
[19] A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies,Arch. Ration. Mech. Anal.161(3) (2002), 181-204. doi:10.1007/s002050100174. · Zbl 1017.74049
[20] K.O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn’s inequality,Ann. of Math. (2)48 (1947), 441-471. doi:10.2307/1969180. · Zbl 0029.17002
[21] G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,Comm. Pure Appl. Math.55(11) (2002), 1461-1506. doi:10.1002/cpa.10048. · Zbl 1021.74024
[22] G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gammaconvergence,Arch. Ration. Mech. Anal.180(2) (2006), 183-236. doi:10.1007/s00205-005-0400-7. · Zbl 1100.74039
[23] V. Girault and P.-A. Raviart,Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag, Berlin, 1986, Theory and algorithms. · Zbl 0585.65077
[24] P. Hornung, Invertibility and non-invertibility in thin elastic structures,Arch. Ration. Mech. Anal.199(2) (2011), 353-368. doi:10.1007/s00205-010-0391-x. · Zbl 1294.74048
[25] P. Hornung, S. Neukamm and I. Velˇci´c, Derivation of a homogenized nonlinear plate theory from 3d elasticity,Calc. Var. Partial Differential Equations51(3-4) (2014), 677-699. doi:10.1007/s00526-013-0691-8. · Zbl 1327.35018
[26] T. Kato, M. Mitrea, G. Ponce and M. Taylor, Extension and representation of divergence-free vector fields on bounded domains,Math. Res. Lett.7(5-6) (2000), 643-650. doi:10.4310/MRL.2000.v7.n5.a10. · Zbl 0980.53022
[27] R.V. Kohn and E. O’Brien, On the bending and twisting of rods with misfit,J. Elasticity130(1) (2018), 115-143. doi:10. 1007/s10659-017-9635-4. · Zbl 1387.74065
[28] V.A. Kondratev and O.A. Oleinik, Boundary-value problems for the system of elasticity theory in unbounded domains. korn’s inequalities,Russian Mathematical Surveys43(5) (1988), 65-119. doi:10.1070/RM1988v043n05ABEH001945. · Zbl 0669.73005
[29] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9)74(6) (1995), 549-578. · Zbl 0847.73025
[30] H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: A variational asymptotic derivation,Journal of Nonlinear Science6(1) (1996), 59-84. · Zbl 0844.73045
[31] M. Lewicka and H. Li, Convergence of equilibria for incompressible elastic plates in the von Kármán regime,Commun. Pure Appl. Anal.14(1) (2015), 143-166. doi:10.3934/cpaa.2015.14.143. · Zbl 1317.74058
[32] M.G. Mora and S. Müller, Derivation of the nonlinear bending-torsion theory for inextensible rods by-convergence, Calc. Var. Partial Differential Equations18(3) (2003), 287-305. doi:10.1007/s00526-003-0204-2. · Zbl 1053.74027
[33] M.G. Mora and S. Müller, A nonlinear model for inextensible rods as a low energy-limit of three-dimensional nonlinear elasticity,Ann. Inst. H. Poincaré Anal. Non Linéaire21(3) (2004), 271-293. · Zbl 1109.74028
[34] M.G. Mora and S. Müller, Convergence of equilibria of three-dimensional thin elastic beams,Proc. Roy. Soc. Edinburgh Sect. A138(4) (2008), 873-896. doi:10.1017/S0308210506001120. · Zbl 1142.74022
[35] M.G. Mora and L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density,J. Differential Equations252(1) (2012), 35-55. doi:10.1016/j.jde.2011.09.009. · Zbl 1291.74128
[36] S. Müller and M.R. Pakzad, Convergence of equilibria of thin elastic plates—the von Kármán case,Comm. Partial Differential Equations33(4-6) (2008), 1018-1032. doi:10.1080/03605300701629443. · Zbl 1141.74034
[37] S. Neukamm, Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from three-dimensional elasticity,Arch. Ration. Mech. Anal.206(2) (2012), 645-706. doi:10.1007/s00205-012-0539-y. · Zbl 1295.74049
[38] S. Neukamm and I. Velˇci´c, Derivation of a homogenized von-Kármán plate theory from 3D nonlinear elasticity,Math. Models Methods Appl. Sci.23(14) (2013), 2701-2748. doi:10.1142/S0218202513500449. · Zbl 1282.35039
[39] R.W. Ogden, Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids,Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences326(1567) (1972), 565-584. · Zbl 0257.73034
[40] H. Olbermann and E. Runa, Interpenetration of matter in plate theories obtained as-limits,ESAIM Control Optim. Calc. Var.23(1) (2017), 119-136. doi:10.1051/cocv/2015042. · Zbl 1364.49015
[41] O. Pantz, On the justification of the nonlinear inextensional plate model,Arch. Ration. Mech. Anal.167(3) (2003), 179- 209. doi:10.1007/s00205-002-0238-1. · Zbl 1030.74031
[42] J. Peypouquet,Convex Optimization in Normed Spaces: Theory, Methods and Examples, Springer Briefs in Optimization, Springer, Cham, 2015, With a foreword by Hedy Attouch. · Zbl 1322.90004
[43] L. Scardia, Asymptotic models for curved rods derived from nonlinear elasticity by-convergence,Proc. Roy. Soc. Edinburgh Sect. A139(5) (2009), 1037-1070. doi:10.1017/S0308210507000194. · Zbl 1422.74061
[44] L. Trabucho and J.M. Viaño, Mathematical modelling of rods, in:Handbook of Numerical Analysis, Vol. IV, Handb. Numer. Anal., Vol. IV, North-Holland, Amsterdam, 1996, pp. 487-974 · Zbl 0873.73041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.