Fractional Kirchhoff-Choquard equation involving Schrödinger term and upper critical exponent. (English) Zbl 1480.35229

Summary: In this paper, we consider fractional degenerate and non-degenerate Kirchhoff type Schrödinger-Choquard problems with upper critical exponent, respectively. By studying the solutions of limit problems for above problems and establishing some local and global compactness results, we provide some sufficient conditions under which above problems have at least one or two bounded state solutions. Our main tools adopted in our proof are splitting theorem and linking theorem.


35J62 Quasilinear elliptic equations
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations
Full Text: DOI


[1] Lieb, E., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 93-105 (1977) · Zbl 0369.35022
[2] Moroz, IM; Penrose, R.; Tod, P., Spherically-symmetric solutions of the Schrödinger-Newton equations, Class. Quantum Gravity, 15, 2733-2742 (1998) · Zbl 0936.83037
[3] Pekar, S., Untersuchung über die Elektronentheorie der Kristalle (1954), Berlin: Akademie Verlag, Berlin · Zbl 0058.45503
[4] Alves, C.O., Figueiredo, G.M., Molle, R.: Multiple positive bound state solutions for a critical Choquard equation. Discrete Contin. Dyn. Syst. doi:10.3934/dcds.2021061. · Zbl 1468.81041
[5] Ambrosio, V., Multiplicity and concentration results for a fractional Choquard equation via penalization method, Potential Anal., 50, 55-82 (2019) · Zbl 1408.35001
[6] Bueno, H.; da Hora Lisboa, N.; Vieira, LL, Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy-Littlewood-Sobolev critical exponent, Z. Angew. Math. Phys., 71, 1-26 (2020) · Zbl 1464.35311
[7] Fiscella, A.; Pucci, P., Degenerate Kirchhoff \((p, q)\)-fractional systems with critical nonlinearities, Fract. Calc. Appl. Anal., 23, 723-752 (2020) · Zbl 1474.35054
[8] Gao, FS; da Silva, ED; Yang, MB; Zhou, JZ, Existence of solutions for critical Choquard equations via the concentration compactness method, Proc. R. Soc. Edinb. Sect. A Math., 150, 921-954 (2020) · Zbl 1437.35213
[9] Gao, FS; Shen, ZF; Yang, MB, On the critical Choquard equation with potential well, Discrete Contin. Dyn. Syst., 38, 3567-3593 (2018) · Zbl 1401.60121
[10] Gao, FS; Yang, MB, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448, 1006-1041 (2017) · Zbl 1357.35106
[11] Gao, FS; Yang, MB, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math., 61, 1219-1242 (2018) · Zbl 1397.35087
[12] Ghimenti, M.; Van Schaftingen, J., Nodal solutions for the Choquard equation, J. Funct. Anal., 271, 107-135 (2016) · Zbl 1345.35046
[13] Giacomoni, J.; Mukherjee, T.; Sreenadh, K., Doubly nonlocal system with Hardy-Littlewood-Sobolev critical nonlinearity, J. Math. Anal. Appl., 467, 638-672 (2018) · Zbl 1396.35068
[14] Goel, D.; Sreenadh, K., Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity, Nonlinear Anal., 186, 162-186 (2019) · Zbl 1421.35110
[15] Guo, L.; Hu, TX; Peng, SJ; Shuai, W., Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent, Calc. Var. Partial Differ. Equ., 58, 1-34 (2019) · Zbl 1403.53057
[16] He, XM; Rǎdulescu, VD, Small linear perturbations of fractional Choquard equations with critical exponent, J. Differ. Equ., 282, 481-540 (2021) · Zbl 1464.35082
[17] Liu, Z., Multiple normalized solutions for Choquard equations involving Kirchhoff type perturbation, Topol. Methods Nonlinear Anal., 54, 297-319 (2019) · Zbl 1433.35098
[18] Moroz, V.; Schaftingen, JV, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 153-184 (2013) · Zbl 1285.35048
[19] Mukherjee, T.; Sreenadh, K., Fractional Choquard equations with critical nonlinearities, NoDEA Nonlinear Differ. Equ. Appl., 24, 34 (2017) · Zbl 1375.35391
[20] Moroz, V.; Schaftingen, JV, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19, 773-813 (2017) · Zbl 1360.35252
[21] Mukherjee, T., Sreenadh, K.: Critical growth elliptic problems with Choquard type nonlinearity: a survey. arxiv preprint. arXiv:1811.04353v1 · Zbl 07357287
[22] Liang, SH; Pucci, P.; Zhang, BL, Multiple solutions for critical Choquard-Kirchhoff type equations, Adv. Nonlinear Anal., 10, 400-419 (2021) · Zbl 1465.35215
[23] Liang, SH; Rǎdulescu, VD, Existence of infinitely many solutions for degenerate Kirchhoff-type Schrödinger-Choquard equations, Electron. J. Differ. Equ., 2017, 1-17 (2017) · Zbl 1422.35169
[24] Pucci, P.; Xiang, MQ; Zhang, BL, Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional \(p\)-Laplacian, Adv. Calc. Var., 12, 253-275 (2019) · Zbl 1431.35233
[25] Song, YQ; Shi, SY, Infinitely many solutions for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 113, 3223-3232 (2019) · Zbl 1430.35090
[26] Song, YQ; Shi, SY, Existence and multiplicity of solutions for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity, Appl. Math. Lett., 92, 170-175 (2019) · Zbl 1416.35110
[27] Su, Y.; Chen, HB, Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent, Comput. Math. Appl., 78, 2063-2082 (2019) · Zbl 1442.35525
[28] Wang, FL; Xiang, MQ, Mulitiplicity of solutions for a class of fractional Choquard-Kirchhoff equations involving critical nonlinearity, Anal. Math. Phys., 9, 1-16 (2019) · Zbl 1417.49003
[29] Wang, FL; Hu, D.; Xiang, MQ, Combined effects of Choquard and singular nonlinearities in fractional Kirchhoff problems, Adv. Nonlinear Anal., 10, 636-658 (2021) · Zbl 1467.35341
[30] Mingione, G.; Rǎdulescu, V., Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501, 125197 (2021) · Zbl 1467.49003
[31] Benci, V.; Cerami, G., Existence of positive solutions of the the equation \(-\Delta u+a(x) u= u^{\frac{N+2}{N-2}}\) in \({\mathbb{R}}^N\), J. Funct. Anal., 88, 90-117 (1990) · Zbl 0705.35042
[32] Correia, JN; Figueiredo, GM, Existence of positive solution of the equation \((-\Delta )^s u+a(x) u= |u|^{2_s^* -2}u\), Calc. Var. Partial Differ. Equ., 58, 1-39 (2019) · Zbl 1415.35119
[33] Xie, QL, Bounded state solution of degenerate Kirchhoff type problem with a critical exponent, J. Math. Anal. Appl., 479, 1-24 (2019) · Zbl 1425.35044
[34] Xie, QL; Ma, SW; Zhang, X., Bound state solutions of Kirchhoff type problems with critical exponent, J. Differ. Equ., 261, 890-924 (2016) · Zbl 1345.35038
[35] Xie, QL; Yu, JS, Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension, Commun. Pure Appl. Anal., 18, 129-158 (2019) · Zbl 1401.35090
[36] Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics. AMS, Providence (2001)
[37] Servadei, R.; Valdinoci, E., Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389, 887-898 (2012) · Zbl 1234.35291
[38] Servadei, R.; Valdinoci, E., The Brezis-Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc., 367, 67-102 (2015) · Zbl 1323.35202
[39] Willem, M., Minimax Theorems (1996), Boston: Birkhäuser, Boston
[40] Yang, Y., Wang, Y.L., Wang, Y.: Existence of solutions for critical Choquard problem with singular coefficients. arxiv Preprint.arXiv:1905.08401
[41] Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis (Pure Applied and Mathematics). Wiley-Interscience Publications. Wiley, New York (1984) · Zbl 0641.47066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.