×

A PML finite element method for electromagnetic scattering problems in a two-layer medium. (English) Zbl 1479.35842

Summary: The paper concerns the numerical solution for three-dimensional electromagnetic scattering problems in a two-layer medium. The Cartesian perfectly matched layer (PML) method is adopted to truncate the unbounded physical domain into a bounded computational domain. Although the PML method has been used widely to solve electromagnetic scattering problems, rigorous finite element error analyses are still rare in the literature, particularly, for electromagnetic scattering problems in layered media. This paper presents a thorough error analysis for finite element approximation to the scattering problems in a two-layer medium with PML boundary condition. Numerical experiments are presented to demonstrate the efficiency of the PML method and the optimal convergence of the finite element solution.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
78A45 Diffraction, scattering
78A48 Composite media; random media in optics and electromagnetic theory
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abarbanel, S.; Gottlieb, D.; Hesthaven, JS, Long time behavior of the perfectly matched layer equations in computational electromagnetics, J. Sci. Comput., 17, 405-422 (2002) · Zbl 1005.78014
[2] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V., Vector potentials in threedimensional in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21, 823-864 (1998) · Zbl 0914.35094
[3] Bao, G., Wu, H.: Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell’s equations. SIAM J. Numer. Anal. 43, 2121-2143 (2005) · Zbl 1145.78303
[4] Bao, G.; Chen, Z.; Wu, H., An adaptive finite element method for diffraction gratings, J. Opt. Soc. Am., 22, 1106-1114 (2005)
[5] Bao, G.; Li, P.; Wu, H., An adaptive finite element method with perfectly matched absorbing layers for wave scattering by periodic structures, Math. Comput., 79, 1-34 (2010) · Zbl 1197.78031
[6] Bérénger, JP, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200 (1994) · Zbl 0814.65129
[7] Bramble, JH; Pasciak, JE, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comput., 76, 597-614 (2007) · Zbl 1116.78019
[8] Bramble, JH; Pasciak, JE, Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem, Math. Comput., 77, 1-10 (2008) · Zbl 1155.78316
[9] Bramble, JH; Pasciak, JE; Trenev, D., Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math. Comput., 79, 2079-2101 (2010) · Zbl 1273.74155
[10] Bramble, JH; Pasciak, JE, Analysis of a Cartesian PML approximation to the three dimensional electromagnetic wave scattering problem, Int. J. Numer. Anal. Model., 9, 543-561 (2012) · Zbl 1277.78030
[11] Bramble, JH; Pasciak, JE, Analysis of a Cartesian PML approximation to acoustic scattering problems in \({\mathbb{R}}^2\) and \({\mathbb{R}}^3\), J. Comput. Appl. Math., 247, 209-230 (2013) · Zbl 1268.65150
[12] Buffa, A.; Costabel, M.; Sheen, D., On traces for \({H}( {curl},\Omega )\) in Lipschitz domains, J. Math. Anal. Appl., 276, 845-867 (2002) · Zbl 1106.35304
[13] Chew, W-C, Waves and Fields in Inhomogenous Media (1990), New York: Van Nodtrand Reimhold, New York
[14] Chen, J.; Chen, Z., An adaptive perfectly matched layer technique for 3D time-harmonic electromagnetic scattering problems, Math. Comput., 77, 673-698 (2008) · Zbl 1136.78007
[15] Chen, M.; Huang, Y.; Li, J., Development and analysis of a new finite element method for the Cohen-Monk PML model, Numerische Mathematik, 147, 127-155 (2021) · Zbl 1459.65181
[16] Chen, Z.; Cui, T.; Zhang, L., An adaptive uniaxial perfectly matched layer method for time harmonic Maxwell scattering problems, Numer. Math., 125, 639-677 (2013) · Zbl 1291.78054
[17] Chen, Z.; Liu, X., An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43, 645-671 (2005) · Zbl 1092.65099
[18] Chen, Z.; Wu, X., An adaptive uniaxial perfectly matched layer method for time-harmonic scattering problems, Numer. Math. Theory Methods Appl., 1, 113-137 (2008) · Zbl 1174.65519
[19] Chen, Z.; Wu, X., Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer. Anal., 50, 2632-2655 (2012) · Zbl 1426.76522
[20] Chen, Z.; Zheng, W., Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layer media, SIAM J. Numer. Anal., 48, 2158-2185 (2010) · Zbl 1222.65118
[21] Chen, Z.; Xiang, X.; Zhang, X., Convergence of the PML method for elastic wave scattering problems, Math. Comput., 85, 2687-2714 (2016) · Zbl 1344.65104
[22] Chen, Z.; Zheng, W., PML method for electromagnetic scattering problem in a two-layer medium, SIAM J. Numer. Anal., 55, 2050-2084 (2017) · Zbl 1379.35302
[23] Collino, F.; Monk, P., The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19, 2061-2090 (1998) · Zbl 0940.78011
[24] Cutzach, PM; Hazard, C., Existence and uniqueness and analyticity properties for electromagnetic scattering in a two-layered medium, Math. Methods Appl. Sci., 21, 433-461 (1998) · Zbl 0916.35119
[25] Duan, X., Jiang, X., Zheng, W.: Exponential convergence of Cartesian PML method for Maxwell’s equations in a two-layer medium. ESAIM Math. Model. Numer. Anal. (M2AN), 54, 929-956 (2020) · Zbl 1437.35648
[26] Girault, V.; Raviart, PA, Finite Element Methods for Navier-Stokes Equations (1980), Berlin: Springer, Berlin · Zbl 0585.65077
[27] Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8, 47-106 (1999) · Zbl 0940.65108
[28] Hohage, T.; Schmidt, F.; Zschiedrich, L., Solving time-harmonic scattering problems based on the pole condition. II. Convergence of the PML method, SIAM J. Math. Anal., 35, 547-560 (2003) · Zbl 1052.65110
[29] Huang, Y., Chen, M., Li, J.: Development and analysis of both finite element and fourth-order in space finite difference methods for an equivalent Berenger’s PML model. J. Comput. Phys. 405, 109154 (2020) · Zbl 1453.78009
[30] Jiang, X.; Zheng, W., Adaptive uniaxial perfectly matched layer method for multiple scattering problems, Comput. Methods Appl. Mech. Eng., 201, 42-52 (2012) · Zbl 1239.74039
[31] Jiang, X., Zhang, L., Zheng, W.: Adaptive hp-finite element computations for time-harmonic Maxwell’s equations. Commun. Comput. Phys. 13, 559-582 (2013) · Zbl 1373.78418
[32] Jiang, X.; Li, P.; Lv, J.; Zheng, W., An adaptive finite element PML method for the elastic wave scattering problem in periodic structure, ESAIM Math. Model. Numer. Anal., 51, 2017-2047 (2016) · Zbl 1408.74048
[33] Jiang, X.; Li, P.; Lv, J.; Zheng, W., Convergence of the PML solution for elastic wave scattering by biperiodic structures, Commun. Math. Sci., 16, 987-1016 (2018) · Zbl 1402.74051
[34] Jiang, X.; Qi, Y.; Yuan, J., An adaptive finite element PML method for the acoustic scattering problems in layered media, Commun. Comput. Phys., 25, 266-288 (2019) · Zbl 1473.65305
[35] Lassas, M.; Somersalo, E., On the existence and convergence of the solution of PML equations, Computing, 60, 229-241 (1998) · Zbl 0899.35026
[36] Lassas, M.; Somersalo, E., Analysis of the PML equations in general convex geometry, Proc. R. Soc. Edinb., 131, 1183-1207 (2001) · Zbl 1200.35013
[37] Li, P., Coupling of finite element and boundary integral method for electromagnetic scattering in a two-layered medium, J. Comput. Phys., 229, 481-497 (2010) · Zbl 1184.65103
[38] Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003) · Zbl 1024.78009
[39] Mumps: a multifrontal massively parallel sparse direct solver, http://mumps.enseeiht.fr/
[40] Teixeira, FL; Chew, WC; Chew, WC, Advances in the theory of perfectly matched layers, Fast and Efficient Algorithms in Computational Electromagnetics, 283-346 (2001), Boston: Artech House, Boston
[41] Turkel, E.; Yefet, A., Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27, 533-557 (1998) · Zbl 0933.35188
[42] Wu, X.; Zheng, W., An adaptive perfectly matched layer method for multiple cavity scattering problems, Commun. Comput. Phys., 19, 534-558 (2016) · Zbl 1388.65160
[43] PHG (Parallel Hierarchical Grid), http://lsec.cc.ac.cn/phg/
[44] Zhang, L.; Zheng, W.; Lu, B.; Cui, T.; Leng, W.; Lin, D., The toolbox PHG and its applications, Sci. Sin. Inf., 46, 1442-1464 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.