×

Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations. (English) Zbl 07443318

Summary: This paper establishes the basic structure of the exponential Euler difference form for Caputo-Fabrizio fractional-order differential equations (CF-FODEs) with multiple lags. The research shows that the acquired difference form (i.e., discrete-time CF-FODEs) belongs to the scope of implicit Euler differences and then the fractional PECE algorithm is proposed to solve this implicit difference. At last, global dynamics of the discrete-time CF-FODEs is discussed from the viewpoint of control theory.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34K37 Functional-differential equations with fractional derivatives
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 73-85 (2015)
[2] Losada, J.; Nieto, J. J., Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 87-92 (2015)
[3] Nieto, J. J., Solution of a fractional logistic ordinary differential equation, Appl. Math. Lett., 123 (2022), Article number: 107568 · Zbl 1480.34011
[4] Saqib, M.; Khan, I.; Shafie, S.; Mohamad, A. Q., Shape effect on MHD flow of time fractional Ferro-Brinkman type nanofluid with ramped heating, Sci. Rep., 11 (2021), Article number: 3725
[5] Mozyrska, D.; Torres, D. F.M.; Wyrwas, M., Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales, Nonlinear Anal. Hybrid Syst., 32, 168-176 (2019) · Zbl 1426.26018
[6] Atanacković, T. M.; Pilipović, S.; Zorica, D., Properties of the Caputo-Fabrizio fractional derivative and its distributional settings, Fract. Calc. Appl. Anal., 21, 29-44 (2018) · Zbl 1392.26010
[7] Abbas, M. I., On the initial value problems for the Caputo-Fabrizio impulsive fractional differential equations, Asian-Eur. J. Math., 14 (2020), Article number: 2150073
[8] Ndairou, F.; Area, I.; Nieto, J. J.; Silva, C. J.; Torres, D. F.M., Fractional model of COVID-19 applied to Galicia, Spain and Portugal, Chaos Solitons Fractals, 144 (2021), Article number: 110652
[9] Rahman, M. U.; Ahmad, S.; Matoog, R. T.; Alshehri, N. A.; Khan, T., Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Solitons Fractals, 150 (2021), Article number: 111121
[10] Ortigueira, M. D.; Tenreiro Machado, J., A critical analysis of the Caputo-Fabrizio operator, Commun. Nonlinear Sci. Numer. Simul., 59, 608-611 (2018) · Zbl 07263368
[11] Bossy, M.; Jabir, J. F.; Martinez, K., On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth, Bernoulli, 27, 312-347 (2021) · Zbl 1475.60130
[12] Hu, P.; Huang, C. M., Delay dependent asymptotic mean square stability analysis of the stochastic exponential Euler method, J. Comput. Appl. Math., 382 (2021), Article number: 113068
[13] Zhang, T. W.; Han, S. F.; Zhou, J. W., Dynamic behaviours for semi-discrete stochastic Cohen-Grossberg neural networks with time delays, J. Franklin Inst. B, 357, 13006-13040 (2020) · Zbl 1454.93293
[14] Hochbruck, M.; Ostermann, A., Exponential Runge-Kutta methods for parabolic problems, Appl. Numer. Math., 53, 323-339 (2005) · Zbl 1070.65099
[15] Calvo, M. P.; Palencia, C., A class of explicit multistep exponential integrators for semilinear problems, Numer. Math., 102, 367-381 (2006) · Zbl 1087.65054
[16] Guo, B. L.; Pu, X. K.; Huang, F. H., Frational Patial Differential Equations and their Numerical Solutions (2011), Science Press: Science Press Beijing
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.