Tan, Wenke The energy measure for the Euler equations: the endpoint case. (English) Zbl 07443293 Appl. Math. Lett. 124, Article ID 107646, 7 p. (2022). Summary: In this paper, we consider the energy measure \(\mathcal{E}\) for the Euler equations in the endpoint case \(u \in L^{2 , \infty} ( B M O ( \Omega ) )\) for any \(\Omega \subseteq \mathbb{R}^3\). We establish the lower bounds of the lower local dimension and concentration dimension of the energy measure \(\mathcal{E}\) at the first blow-up time. MSC: 35Q31 Euler equations 81-XX Quantum theory Keywords:Euler equations; energy measure; lower local dimension; concentration dimension PDF BibTeX XML Cite \textit{W. Tan}, Appl. Math. Lett. 124, Article ID 107646, 7 p. (2022; Zbl 07443293) Full Text: DOI OpenURL References: [1] L. Onsager, Statistical hydrodynamics. Nuovo Cimento (9), 6(Supplemento, 2(Convegno Internazionale di Meccanica Statistica)) (1949) 279-287. [2] Constantin, P.; W. N., E.; Titi, E. S., Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Comm. Math. Phys., 165, 1, 207-209 (1994) · Zbl 0818.35085 [3] Duchon, J.; Robert, R., Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13, 1, 249-255 (2000) · Zbl 1009.35062 [4] Cheskidov, A.; Constantin, P.; Friedlander, S.; Shvydkoy, R., Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity, 21, 6, 1233-1252 (2008) · Zbl 1138.76020 [5] Isett, P., A proof of onsager’s conjecture, Ann. of Math., 188, 3, 871-963 (2018) · Zbl 1416.35194 [6] De Lellis, C.; Székelyhidi, J. L., The Euler equations as a differential inclusion, Ann. of Math. (2), 170, 3, 1417-1436 (2009) · Zbl 1350.35146 [7] Mattila, P., (Fractals and Rectifiability. Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44 (1995), Geometry of sets and measures in Euclidean spaces: Geometry of sets and measures in Euclidean spaces Cambridge) · Zbl 0819.28004 [8] Shvydkoy, R., A study of energy concentration and drain in incompressible fluids, Nonlinearity, 26, 2, 425-436 (2013) · Zbl 1322.76012 [9] Cheskidov, A.; Friedlander, S.; Shvydkoy, R., On the energy equality for weak solutions of the 3D Navier-Stokes equations, (Advances in Mathematical Fluid Mechanics (2010), Springer: Springer Berlin), 171-175 · Zbl 1374.35279 [10] Leslie, T. M.; Shvydkoy, R., The energy measure for the Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., 230, 459-492 (2018) · Zbl 1405.35141 [11] Leslie, T. M.; Shvydkoy, R., Conditions implying energy equality for weak solutions of the Navier-Stokes equations, SIAM J. Math. Anal., 50, 1, 870-890 (2018) · Zbl 1387.76102 [12] Shvydkoy, R., A geometric condition implying an energy equality for solutions of the 3D Navier-Stokes equation, J. Dynam. Differential Equations, 21, 1, 117-125 (2009) · Zbl 1160.76011 [13] W. Tan, Z. Yin, The energy conservation and regularity for the Navier-Stokes equations, arXiv:2107.04157. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.