×

Integral solutions of nondense impulsive conformable-fractional differential equations with nonlocal condition. (English) Zbl 1493.34019

In this paper, the authors discuss the existence and stability of integral solutions for nondense impulsive conformable fractional differential equations with nonlocal conditions. They first obtain the Duhamel formula for the system by using the properties of conformable fractional derivative and the theory of extrapolation semigroups. Then, they derive sufficient conditions for the existence and uniqueness of integral solutions for systems by using the fixed point theory. The paper is writing well and interesting.

MSC:

34A08 Fractional ordinary differential equations
34G20 Nonlinear differential equations in abstract spaces
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34A37 Ordinary differential equations with impulses
47D03 Groups and semigroups of linear operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57-66. · Zbl 1304.26004
[2] M. Adimy, M. Alia and K. Ezzinbi, Functional differential equations with unbounded delay in extrapolation spaces, Electron. J. Differential Equations 2014 (2014), Paper No. 180. · Zbl 1306.34117
[3] V. V. Au, Y. Zhou, N. H. Can and N. T. Tuan, Regularization of a terminal value nonlinear diffusion equation with conformable time derivative, J. Integral Equations Appl. 32 (2020), no. 4, 397-416. · Zbl 1460.35385
[4] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, Contemp. Math. Appl. 2, Hindawi Publishing, New York, 2006. · Zbl 1130.34003
[5] T. T. Binh, N. H. Luc, D. O’Regan and N. H. Can, On an initial inverse problem for a diffusion equation with a conformable derivative, Adv. Difference Equ. 2019 (2019), Paper No. 481. · Zbl 1487.35395
[6] M. Bouaouid, M. Atraoui, K. Hilal and S. Melliani, Fractional differential equations with nonlocal-delay condition, J. Adv. Math. Stud. 11 (2018), no. 2, 214-225. · Zbl 1415.34121
[7] M. Bouaouid, M. Hannabou and K. Hilal, Nonlocal conformable-fractional differential equations with a measure of noncompactness in Banach spaces, J. Math. 2020 (2020), Article ID 5615080. · Zbl 1453.34003
[8] M. Bouaouid, K. Hilal and S. Melliani, Nonlocal conformable fractional Cauchy problem with sectorial operator, Indian J. Pure Appl. Math. 50 (2019), no. 4, 999-1010. · Zbl 1437.34004
[9] M. Bouaouid, K. Hilal and S. Melliani, Nonlocal telegraph equation in frame of the conformable time-fractional derivative, Adv. Math. Phys. 2019 (2019), Article ID 7528937. · Zbl 1429.35197
[10] M. Bouaouid, K. Hilal and S. Melliani, Sequential evolution conformable differential equations of second order with nonlocal condition, Adv. Difference Equ. 2019 (2019), Paper No. 21. · Zbl 1458.34014
[11] M. Bouaouid, K. Hilal and S. Melliani, Existence of mild solutions for conformable fractional differential equations with nonlocal conditions, Rocky Mountain J. Math. 50 (2020), no. 3, 871-879. · Zbl 1479.34009
[12] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), no. 2, 494-505. · Zbl 0748.34040
[13] W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math. 290 (2015), 150-158. · Zbl 1336.70033
[14] G. Da Prato and E. Sinestrari, Differential operators with non dense domain, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 14 (1987), 285-344. · Zbl 0652.34069
[15] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl. 179 (1993), no. 2, 630-637. · Zbl 0798.35076
[16] A. El-Ajou, A modification to the conformable fractional calculus with some applications, Alexandria Eng. J. 59 (2020), no. 4, 2239-2249.
[17] H. Eltayeb, I. Bachar and M. Gad-Allah, Solution of singular one-dimensional Boussinesq equation by using double conformable Laplace decomposition method, Adv. Difference Equ. 2019 (2019), Paper No. 293. · Zbl 1485.35381
[18] H. Eltayeb and S. Mesloub, A note on conformable double Laplace transform and singular conformable pseudoparabolic equations, J. Funct. Spaces 2020 (2020), Article ID 8106494. · Zbl 1451.44001
[19] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer, Berlin, 2001.
[20] K. Ezzinbi and J. H. Liu, Nondensely defined evolution equations with nonlocal conditions, Math. Comput. Modelling 36 (2002), no. 9-10, 1027-1038. · Zbl 1035.34063
[21] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. · Zbl 1297.26013
[22] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006. · Zbl 1092.45003
[23] V. Lakshmikantham, D. D. Baĭnov and P. S. Simeonov, Theory of Impulsive Differential Equations, Ser. Mod. Appl. Math. 6, World Scientific, Teaneck, 1989. · Zbl 0719.34002
[24] J. Liang, J. H. Liu and T.-J. Xiao, Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Modelling 49 (2009), no. 3-4, 798-804. · Zbl 1173.34048
[25] L. Martínez, J. J. Rosales, C. A. Carreño and J. M. Lozano, Electrical circuits described by fractional conformable derivative, International Journal of Circuit Theory and Applications 46 (2018), no. 5, 1091-1100.
[26] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993. · Zbl 0789.26002
[27] G. M. Mophou, Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Anal. 72 (2010), no. 3-4, 1604-1615. · Zbl 1187.34108
[28] G. M. Mophou and G. M. N’Guérékata, On integral solutions of some nonlocal fractional differential equations with nondense domain, Nonlinear Anal. 71 (2009), no. 10, 4668-4675. · Zbl 1178.34005
[29] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. · Zbl 0428.26004
[30] W. E. Olmstead and C. A. Roberts, The one-dimensional heat equation with a nonlocal initial condition, Appl. Math. Lett. 10 (1997), no. 3, 89-94. · Zbl 0888.35042
[31] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983. · Zbl 0516.47023
[32] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng. 198, Academic Press, San Diego, 1999. · Zbl 0918.34010
[33] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon & Breach Science, Yverdon, 1993. · Zbl 0818.26003
[34] H. R. Thieme, “Integrated semigroups” and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl. 152 (1990), no. 2, 416-447. · Zbl 0738.47037
[35] N. H. Tuan, T. N. Thach, N. H. Can and D. O’Regan, Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data, Math. Methods Appl. Sci. (2019), 10.1002/mma.6133. · Zbl 1470.35415 · doi:10.1002/mma.6133
[36] X. Wang, J. Wang and M. Fečkan, Controllability of conformable differential systems, Nonlinear Anal. Model. Control 25 (2020), no. 4, 658-674. · Zbl 1511.93023
[37] S. Yang, L. Wang and S. Zhang, Conformable derivative: Application to non-Darcian flow in low-permeability porous media, Appl. Math. Lett. 79 (2018), 105-110. · Zbl 1459.76154
[38] S. T. Zavalishchin, Impulse dynamic systems and applications to mathematical economics, Dynam. Systems Appl. 3 (1994), no. 3, 443-449. · Zbl 0805.34009
[39] D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo 54 (2017), no. 3, 903-917. · Zbl 1375.26020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.