×

Equivariant decomposition of polynomial vector fields. (English) Zbl 07442604

MSC:

17B66 Lie algebras of vector fields and related (super) algebras
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics
70K45 Normal forms for nonlinear problems in mechanics
15A72 Vector and tensor algebra, theory of invariants
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Baider, A. and Sanders, J. A., Unique normal forms: The nilpotent Hamiltonian case, J. Differential Equations92(2) (1991) 282-304. · Zbl 0731.58060
[2] Baider, A. and Sanders, J. A., Further reduction of the Takens-Bogdanov normal form, J. Differential Equations99(2) (1992) 205-244. · Zbl 0761.34027
[3] Collingwood, D. H. and McGovern, W. M., Nilpotent Orbits in Semisimple Lie Algebra: An Introduction (CRC Press, 1993). · Zbl 0972.17008
[4] Donley, R. W. Jr. and Kim, W. G., A rational theory of Clebsch-Gordan coefficients, in Representation Theory and Harmonic Analysis on Symmetric Spaces, , Vol. 714 (American Mathematical Society, Providence, RI, 2018), pp. 115-130. · Zbl 1400.22017
[5] Freire, E., Gamero, E., RodrĂ­guez-Luis, A. J. and Algaba, A., A note on the triple-zero linear degeneracy: Normal forms, dynamical and bifurcation behaviors of an unfolding, Int. J. Bifurc. Chaos12(12) (2002) 2799-2820. · Zbl 1043.37042
[6] Gazor, M., Mokhtari, F. and Sanders, J. A., Vector potential normal form classification for completely integrable solenoidal nilpotent singularities, J. Differential Equations267 (2019) 3083-3113. · Zbl 1412.34131
[7] Kassel, C., Quantum Groups, Vol. 155 (Springer Science & Business Media, 2012). · Zbl 1113.17304
[8] Kirillov, A. N., The quantum Clebsch-Gordan coefficients, Zapiski Nauchnykh Seminarov POMI168 (1988) 67-84. · Zbl 0684.17003
[9] Knapp, A. W., Lie Groups Beyond an Introduction, Vol. 140 (Springer Science & Business Media, 2013). · Zbl 0862.22006
[10] Koornwinder, T. H., Clebsch-Gordan coefficients for SU(2) and Hahn polynomials, Nieuw Archief voor de Wiskunde (3), 29 (1981) 140-155. · Zbl 0483.20027
[11] F. Mokhtari, E. Roell and J. A. Sanders, Normal form for maps with nilpotent linear part (2020), arXiv:2003.01568.
[12] Mokhtari, F. and Sanders, J. A., Versal normal form for nonsemisimple singularities, J. Differential Equations267(5) (2019) 3083-3113. · Zbl 1416.34031
[13] Olver, P. J., Classical Invariant Theory, Vol. 44 (Cambridge University Press, 1999). · Zbl 0971.13004
[14] Sanders, J. A., Normal form theory and spectral sequences, J. Differential Equations192(2) (2003) 536-552. · Zbl 1039.34032
[15] Sanders, J. A., Verhulst, F. and Murdock, J., Averaging Methods in Nonlinear Dynamical Systems, 2nd edn., , Vol. 59 (Springer, New York, 2007). · Zbl 1128.34001
[16] Stolovitch, L. and Verstringe, F., Holomorphic normal form of nonlinear perturbations of nilpotent vector fields, Regul. Chaot. Dynam.21(4) (2016) 410-436. · Zbl 1358.34098
[17] van der Waerden, B. L., Die Gruppentheoretische Methode in der Quantenmechanik (Springer, 1932). · Zbl 0004.08905
[18] van der Waerden, B. L., Group Theory and Quantum Mechanics, Vol. 214 (Springer Science & Business Media, 2012).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.