×

On singularly perturbed linear cocycles over irrational rotations. (English) Zbl 1484.37057

Summary: We study a linear cocycle over the irrational rotation \(\sigma_{\omega}(x)=x+\omega\) of the circle \(\mathbb{T}^1 \). It is supposed that the cocycle is generated by a \(C^2\)-map \(A_{\varepsilon}:\mathbb{T}^1\to SL(2,\mathbb{R})\) which depends on a small parameter \(\varepsilon\ll 1\) and has the form of the Poincaré map corresponding to a singularly perturbed Hill equation with quasi-periodic potential. Under the assumption that the norm of the matrix \(A_{\varepsilon}(x)\) is of order \(\exp(\pm\lambda(x)/\varepsilon)\), where \(\lambda(x)\) is a positive function, we examine the property of the cocycle to possess an exponential dichotomy (ED) with respect to the parameter \(\varepsilon \). We show that in the limit \(\varepsilon\to 0\) the cocycle “typically” exhibits ED only if it is exponentially close to a constant cocycle. Conversely, if the cocycle is not close to a constant one, it does not possess ED, whereas the Lyapunov exponent is “typically” large.

MSC:

37H15 Random dynamical systems aspects of multiplicative ergodic theory, Lyapunov exponents
37A20 Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations
37C55 Periodic and quasi-periodic flows and diffeomorphisms
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Avila, A., Almost Reducibility and Absolute Continuity: 1, arXiv:1006.0704 (2010).
[2] Avila, A.; Bochi, J., A Uniform Dichotomy for Generic \(\text{SL}(2,\mathbb{R})\) Cocycles over a Minimal Base, Bull. Soc. Math. France, 135, 3, 407-417 (2007) · Zbl 1217.37017
[3] Avila, A.; Bochi, J.; Damanik, D., Opening Gaps in the Spectrum of Strictly Ergodic Schrödinger Operators, J. Eur. Math. Soc. (JEMS), 14, 1, 61-106 (2012) · Zbl 1263.37007
[4] Benedicks, M.; Carleson, L., The Dynamics of the Hénon Map, Ann. of Math. (2), 133, 1, 73-169 (1991) · Zbl 0724.58042
[5] Brjuno, A. D., On Convergence of Transforms of Differential Equations to the Normal Form, Dokl. Akad. Nauk SSSR, 165, 987-989 (1965)
[6] Bourgain, J.; Jitomirskaya, S., Continuity of the Lyapunov Exponent for Quasiperiodic Operators with Analytic Potential, J. Statist. Phys., 108, 5-6, 1203-1218 (2002) · Zbl 1039.81019
[7] Buslaev, V. S.; Fedotov, A. A., Monodromization and Harper Equation, Séminares sur les Équations aux Dérivées Partielles (1993 - 1994) (1994), Palaiseau: École Polytech., Palaiseau · Zbl 0880.34082
[8] Coppel, W. A., Dichotomies in Stability Theory (1978), Berlin: Springer, Berlin · Zbl 0376.34001
[9] Dinaburg, E. I.; Sinai, Ya. G., The One-Dimensional Schrödinger Equation with a Quasi-Periodic Potential, Funct. Anal. Appl., 9, 4, 279-289 (1975) · Zbl 0333.34014
[10] Duarte, P.; Klein, S., Continuity, Positivity and Simplicity of the Lyapunov Exponents for Quasi-Periodic Cocycles, J. Eur. Math. Soc. (JEMS), 21, 7, 2051-2106 (2019) · Zbl 1427.37042
[11] Duarte, P.; Klein, S., Continuity of the Lyapunov Exponents for Linear Cocycles, \( \mathit{31^{\circ}}\) Colóquio Brasileiro de Matemática (Rio de Janeiro, 2017) (2017), Rio de Janeiro: IMPA, Rio de Janeiro
[12] Eliasson, L. H., Floquet Solutions for the \(1\)-Dimensional Quasi-Periodic Schrödinger Equation, Comm. Math. Phys., 146, 3, 447-482 (1992) · Zbl 0753.34055
[13] Fabbri, R., On the Lyapunov Exponent and Exponential Dichotomy for the Quasi-Periodic Schrödinger Operator, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5, 1, 149-161 (2002) · Zbl 1177.34108
[14] Fedotov, A. A., Adiabatic Almost Periodic Schrödinger Operators, J. Math. Sci. (N. Y.), 173, 3, 299-319 (2011) · Zbl 1237.34147
[15] Herman, M.-R., Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension \(2\), Comment. Math. Helv., 58, 3, 453-502 (1983) · Zbl 0554.58034
[16] Ivanov, A. V., Connecting Orbits near the Adiabatic Limit of Lagrangian Systems with Turning Points, Regul. Chaotic Dyn., 22, 5, 479-501 (2017) · Zbl 1435.37089
[17] Jakobson, M. V., Absolutely Continuous Invariant Measures for One-Parameter Families of One-Dimensional Maps, Comm. Math. Phys., 81, 1, 39-88 (1981) · Zbl 0497.58017
[18] Johnson, R.; Moser, J., The Rotation Number for Almost Periodic Potentials, Comm. Math. Phys., 84, 3, 403-438 (1982) · Zbl 0497.35026
[19] Khinchin, A. Ya., Continued Fractions (1964), Chicago, Ill.: Univ. of Chicago Press, Chicago, Ill. · Zbl 0117.28601
[20] Lazutkin, V. F., Making Fractals Fat, Regul. Chaotic Dyn., 4, 1, 51-69 (1999) · Zbl 1076.37506
[21] Palmer, K. J., Exponential Dichotomoies and Transversal Homoclinic Points, J. Differ. Equations, 55, 225-256 (1984) · Zbl 0508.58035
[22] Palmer, K. J., A Perturbation Theorem for Exponential Dichotomies, Proc. Roy. Soc. Edinburgh Sect. A, 106, 1-2, 25-37 (1987) · Zbl 0629.34058
[23] Puig, J., Reducibility of Quasi-Periodic Skew-Products and the Spectrum of Schrödinger Operators, PhD Dissertation, Universitat de Barcelona, Barcelona, 2004, 211 pp.
[24] Rüssmann, H., On the One-Dimensional Schrödinger Equation with a Quasiperiodic Potential, Nonlinear Dynamics: Internat. Conf. (New York, 1979), 90-107 (1980), New York: New York Acad. Sci., New York
[25] Sorets, E.; Spencer, Th., Positive Lyapunov Exponents for Schrödinger Operators with Quasi-Periodic Potentials, Comm. Math. Phys., 142, 3, 543-566 (1991) · Zbl 0745.34046
[26] Young, L.-S., Lyapunov Exponents for Some Quasi-Periodic Cocycles, Ergodic Theory Dynam. Systems, 17, 2, 483-504 (1997) · Zbl 0873.28013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.