×

A selective smoothed finite element method for 3D explicit dynamic analysis of the human annulus fibrosus with modified composite-based constitutive model. (English) Zbl 1521.74267

Summary: The human annulus fibrosus (HAF) is the major component in response to external forces for the intervertebral disk (IVD), which maintains the stability and flexibility of human spine. It can be assumed to be an anisotropic nearly incompressible hyperelastic composite consisting of collagen fibers and matrix in the numerical simulations of biomechanics. However, due to the geometric complexity and material nonlinearity of HAF, the conventional Finite Element Method (FEM) often gets into difficulties in mesh generation and uncertainty of accuracy control. In this paper, a modified composite-based constitutive model, which considers the slight compressibility of ground substance and the shear interaction between collagen fibers and matrix, is developed to describe the mechanical behavior of HAF. In addition, based on the gradient smoothing techniques, the selective 3D-edge-based and node-based smoothed finite element method (Selective 3D-ES/NS-FEM) is developed to alleviate volume locking and improve the accuracy of linear four-node tetrahedral (TET4) elements. Combined with the modified constitutive model, the Selective 3D-ES/NS-FEM is applied into the explicit dynamic analysis of HAF undergoing large deformation. By comparing with the experiment data in the literatures and the numerical results produced by conventional FEM, the presented approach is proved to possess excellent accuracy and efficiency in predicting the nonlinear mechanical behavior of HAF, as well as the orientation change of the collagen fibers. Moreover, the Selective 3D-ES/NS-FEM is demonstrated to have robust capability in handling element distortion, even with the simplest TET4 mesh. This study is significant to the biomechanical research of HAF, and has potential value for guiding the prevention and treatment of low back pain.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hartvigsen, J.; Hancock, M. J.; Kongsted, A.; Louw, Q.; Ferreira, M. L.; Genevay, S., What low back pain is and why we need to pay attention, Lancet, 391, 2356-2367 (2018)
[2] Rubin, D. I., Epidemiology and risk factors for spine pain, Neurol Clin, 25, 353-371 (2007)
[3] Schmidt, H.; Galbusera, F.; Rohlmann, A.; Shirazi-Adl, A., What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades?, J Biomech, 46, 2342-2355 (2013)
[4] Wu, H. C.; Yao, R. F., Mechanical behavior of the human annulus fibrosus, J Biomech, 9, 1-7 (1976)
[5] Adams, M. A.; Green, T. P., Tensile properties of the annulus fibrosus, Eur Spine J, 2, 203-208 (1993)
[6] Skaggs, D. L.; Weidenbaum, M.; Iatridis, J. C.; Ratcliffe, A.; Mow, V. C., Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus, Spine, 19, 1310-1319 (1994)
[7] Fujita, Y.; Wagner, D. R.; Biviji, A. A.; Duncan, N. A.; Lotz, J. C., Anisotropic shear behavior of the annulus fibrosus: effect of harvest site and tissue prestrain, Med Eng Phys, 22, 349-357 (2000)
[8] Holzapfel, G. A.; Schulze-Bauer, C. A.J.; Feigl, G.; Regitnig, P., Single lamellar mechanics of the human lumbar anulus fibrosus, Biomech Model Mechan, 3, 125-140 (2005)
[9] Spencer, A. J.M., Continuum theory of the mechanics of fibre-reinforced composites (1984), Springer: Springer Vienna · Zbl 0559.00015
[10] Elliott, D. M.; Setton, L. A., A linear material model for fiber-induced anisotropy of the anulus fibrosus, J Biomech Eng, 122, 173-179 (2000)
[11] Elliott, D. M.; Setton, L. A., Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions, J Biomech Eng, 123, 256-263 (2001)
[12] Bass, E. C.; Ashford, F. A.; Segal, M. R.; Lotz, J. C., Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation, Ann Biomed Eng, 32, 1231-1242 (2004)
[13] Wagner, D. R.; Lotz, J. C., Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus, J Orthop Res, 22, 901-909 (2004)
[14] Peng, X.; Guo, Z.; Moran, B., An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus, J Appl Mech, 73, 815-824 (2006) · Zbl 1111.74590
[15] Guo, Z. Y.; Peng, X. Q.; Moran, B., A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus, J Mech Phys Solids, 54, 1952-1971 (2006) · Zbl 1120.74634
[16] Shirazi-Adl, S. A.; Shrivastava, S. C.; Ahmed, A. M., Stress analysis of the lumbar disc-body unit in compression a three-dimensional nonlinear finite element study, Spine, 9, 120-134 (1984)
[17] Shirazi-Adl, A.; Ahmed, A. M.; Shrivastava, S. C., Mechanical response of a lumbar motion segment in axial torque alone and combined with compression, Spine, 11, 914-927 (1986)
[18] Shirazi-Adl, A., Biomechanics of the lumbar spine in sagittal/lateral moments, Spine, 19, 2407-2414 (1994)
[19] Yin, L.; Elliott, D. M., A homogenization model of the annulus fibrosus, J Biomech, 38, 1674-1684 (2005)
[20] Schroeder, Y.; Wilson, W.; Huyghe, J. M.; Baaijens, F. P.T, Osmoviscoelastic finite element model of the intervertebral disc, Eur Spine J, 15, 361-371 (2006)
[21] Schmidt, H.; Heuer, F.; Simon, U.; Kettler, A.; Rohlmann, A.; Claes, L., Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus, Clin Biomech, 21, 337-344 (2006)
[22] Schmidt, H.; Heuer, F.; Drumm, J.; Klezl, Z.; Claes, L.; Wilke, H., Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment, Clin Biomech, 22, 377-384 (2007)
[23] Malandrino, A.; Noailly, J.; Lacroix, D., Regional annulus fibre orientations used as a tool for the calibration of lumbar intervertebral disc finite element models, Comput Method Biomec, 16, 923-928 (2013)
[24] Jacobs, N. T.; Cortes, D. H.; Peloquin, J. M.; Vresilovic, E. J.; Elliott, D. M., Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent, J Biomech, 47, 2540-2546 (2014)
[25] Finley, S. M.; Brodke, D. S.; Spina, N. T.; DeDen, C. A.; Ellis, B. J., FEBio finite element models of the human lumbar spine, Comput Method Biomec, 21, 444-452 (2018)
[26] Liu, G. R.; Zhang, G. Y., Smoothed Point Interpolation Methods: G Space Theory and Weakened Weak Forms (2013), Word Scientific: Word Scientific SG Singapore · Zbl 1278.65002
[27] Liu, G. R.; Zhang, G. Y., A normed G space and weakened weak (W^2) formulation of a cell-based smoothed point interpolation method, Int J Comput Methods, 6, 147-179 (2009) · Zbl 1264.74285
[28] Liu, G. R., A G space theory and a weakened weak (W^2) form for a unified formulation of compatible and incompatible methods: part II applications to solid mechanics problems, Int J Numer Methods Eng, 81, 1127-1156 (2010) · Zbl 1183.74359
[29] Liu, G. R.; Trung, N. T., Smoothed Finite Element Methods (2010), CRC Press: CRC Press Boca Raton
[30] Chen, J.; Wu, C.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int J Numer Methods Eng, 50, 435-466 (2001) · Zbl 1011.74081
[31] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229-256 (1994) · Zbl 0796.73077
[32] Gu, Y. T., Meshfree methods and their comparisons, Int J Comput Methods, 2, 477-515 (2005) · Zbl 1137.74302
[33] Hu, D.; Wang, Y.; Liu, G. R.; Li, T.; Han, X.; Gu, Y. T., A sub‒domain smoothed Galerkin method for solid mechanics problems, Int J Numer Methods Eng, 98, 781-798 (2014) · Zbl 1352.74363
[34] Liu, G. R., A generalized gradient smoothing technique and the smoothed bilinear form for galerkin formulation of a wide class of computational methods, Int J Comput Methods, 5, 199-236 (2008) · Zbl 1222.74044
[35] Huo, S. H.; Li, Y. S.; Duan, S. Y.; Han, X.; Liu, G. R., Novel quadtree algorithm for adaptive analysis based on cell-based smoothed finite element method, Eng Anal Bound Elem, 106, 541-554 (2019) · Zbl 1464.74180
[36] Liu, G. R.; Zeng, W.; Nguyen-Xuan, H., Generalized stochastic cell-based smoothed finite element method (GS_CS-FEM) for solid mechanics, Finite Elem Anal Des, 63, 51-61 (2013) · Zbl 1282.74090
[37] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K. Y., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput Struct, 87, 14-26 (2008)
[38] Nguyen-Thoi, T.; Vu-Do, H. C.; Rabczuk, T.; Nguyen-Xuan, H., A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput Methods Appl Mech Eng, 199, 3005-3027 (2010) · Zbl 1231.74432
[39] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, J Sound Vib, 320, 1100-1130 (2009)
[40] Peng, F.; Huang, W.; Zhang, Z.; Fu Guo, T.; Ma, Y. E., Phase field simulation for fracture behavior of hyperelastic material at large deformation based on edge-based smoothed finite element method, Eng Fract Mech, 238, 107-233 (2020)
[41] Feng, S. Z.; Cui, X. Y.; Li, G. Y., Transient thermal mechanical analyses using a face-based smoothed finite element method (FS-FEM), Int J Therm Sci, 74, 95-103 (2013)
[42] Nguyen-Thoi, T.; Liu, G. R.; Vu-Do, H. C.; Nguyen-Xuan, H., A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh, Comput Methods Appl Mech Eng, 198, 3479-3498 (2009) · Zbl 1230.74193
[43] Feng, S. Z.; Cui, X. Y.; Li, G. Y., Thermo-mechanical analyses of composite structures using face-based smoothed finite element method, Int J Appl Mech, 6, Article 1450020 pp. (2014)
[44] Wang, B.; Cai, Y.; Li, Z. C.; Ding, C. S.; Yang, T. J.; Cui, X. Y., Stochastic stable node-based smoothed finite element method for uncertainty and reliability analysis of thermo-mechanical problems, Eng Anal Bound Elem, 114, 23-44 (2020) · Zbl 1464.74209
[45] He, Z. C.; Liu, G. R.; Zhong, Z. H.; Zhang, G. Y.; Cheng, A. G., Coupled analysis of 3D structural-acoustic problems using the edge-based smoothed finite element method/finite element method, Finite Elem Anal Des, 46, 1114-1121 (2010)
[46] Li, W.; Chai, Y. B.; Lei, M.; Liu, G. R., Analysis of coupled structural-acoustic problems based on the smoothed finite element method (S-FEM), Eng Anal Bound Elem, 42, 84-91 (2014) · Zbl 1297.74040
[47] Nguyen-Xuan, H.; Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Tran, C., An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures, Smart Mater Struct, 18, 5022-5039 (2009)
[48] Zheng, J. X.; Duan, Z. S.; Zhou, L. M.; Gupta, R., A Coupling Electromechanical Cell-Based Smoothed Finite Element Method Based on Micromechanics for Dynamic Characteristics of Piezoelectric Composite Materials, Adv Mater Sci Eng, 2019, 1-16 (2019)
[49] Li, M.; Liu, M. R.; Zhou, L. M., The static behaviors study of magneto-electro-elastic materials under hygrothermal environment with multi-physical cell-based smoothed finite element method, Compos Sci Technol, 193, Article 108130 pp. (2020)
[50] Zhou, L.; Li, X.; Li, M.; Żur, K. K., The smoothed finite element method for time-dependent mechanical responses of MEE materials and structures around Curie temperature, Comput Methods Appl Mech Eng, 370, Article 113241 pp. (2020) · Zbl 1506.74096
[51] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements, Comput Methods Appl Mech Eng, 197, 3883-3897 (2008) · Zbl 1194.74433
[52] Zeng, W.; Liu, G. R.; Li, D.; Dong, X. W., A smoothing technique based beta finite element method (βFEM) for crystal plasticity modeling, Comput Struct, 162, 48-67 (2016)
[53] Li, E.; He, Z. C.; Xu, X.; Liu, G. R.; Gu, Y. T., A three-dimensional hybrid smoothed finite element method (H-SFEM) for nonlinear solid mechanics problems, Acta Mech, 226, 4223-4245 (2015) · Zbl 1328.74080
[54] Jiang, Y.; Tay, T. E.; Chen, L.; Sun, X. S., An edge-based smoothed XFEM for fracture in composite materials, Int J Fracture, 179, 179-199 (2013)
[55] Zhang, Z.; Liu, G. R., Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems, Comput Mech, 46, 229-246 (2010) · Zbl 1398.74431
[56] Zhang, Z.; Liu, G. R., Upper and lower bounds for natural frequencies: a property of the smoothed finite element methods, Int J Numer Methods Eng, 84, 149-178 (2010) · Zbl 1202.74188
[57] Jiang, C.; Han, X.; Liu, G. R.; Zhang, Z.; Yang, G.; Gao, G., Smoothed finite element methods (S-FEMs) with polynomial pressure projection (P3) for incompressible solids, Eng Anal Bound Elem, 84, 253-269 (2017) · Zbl 1403.74110
[58] Li, Y.; Liu, G. R., A novel node-based smoothed finite element method with linear strain fields for static, free and forced vibration analyses of solids, Appl Math Comput, 352, 30-58 (2019) · Zbl 1428.74211
[59] He, Z. C.; Li, G. Y.; Zhong, Z. H.; Cheng, A. G.; Zhang, G. Y.; Li, E., An ES-FEM for accurate analysis of 3D mid-frequency acoustics using tetrahedron mesh, Comput Struct, 106-107, 125-134 (2012)
[60] He, Z. C.; Li, G. Y.; Zhong, Z. H.; Cheng, A. G.; Zhang, G. Y.; Liu, G. R., An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems, Comput Mech, 52, 221-236 (2013) · Zbl 1308.74064
[61] Cazes, F.; Meschke, G., An edge-based smoothed finite element method for 3D analysis of solid mechanics problems, Int J Numer Methods Eng, 94, 715-739 (2013) · Zbl 1352.74334
[62] Jiang, C.; Zhang, Z.; Han, X.; Liu, G., Selective smoothed finite element methods for extremely large deformation of anisotropic incompressible bio-tissues, Int J Numer Methods Eng, 99, 587-610 (2014) · Zbl 1352.74006
[63] Jiang, C.; Zhang, Z.; Liu, G. R.; Han, X.; Zeng, W., An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues, Eng Anal Bound Elem, 59, 62-77 (2015) · Zbl 1403.74111
[64] Wu, S. W.; Jiang, C.; Jiang, C.; Liu, G. R., A selective smoothed finite element method with visco-hyperelastic constitutive model for analysis of biomechanical responses of brain tissues, Int J Numer Methods Eng, 121, 5123-5149 (2020)
[65] Francis, A.; Ortiz-Bernardin, A.; Bordas, S. P.; Natarajan, S., Linear smoothed polygonal and polyhedral finite elements, Int J Numer Methods Eng, 109, 1263-1288 (2017)
[66] Nguyen-Xuan, H.; Chau, K. N.; Chau, K. N., Polytopal composite finite elements, Comput Methods Appl Mech Eng, 355, 405-437 (2019) · Zbl 1441.65109
[67] Belytschko, T.; Liu, W. K.; Moran, B.; Elkhodary, K. I., Nonlinear finite elements for continua and structures (2014), John Wiley & Sons Inc: John Wiley & Sons Inc Chichester, West Sussex
[68] Sussman, T.; Bathe, K., A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput Struct, 26, 357-409 (1987) · Zbl 0609.73073
[69] Chang, T. Y.P.; Saleeb, A. F.; Li, G., Large strain analysis of rubber-like materials based on a perturbed Lagrangian variational principle, Comput Mech, 8, 221-233 (1991) · Zbl 0850.73281
[70] Weiss, J. A.; Maker, B. N.; Govindjee, S., Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comput Methods Appl Mech Eng, 135, 107-128 (1996) · Zbl 0893.73071
[71] Holzapfel, G. A.; Gasser, T. C.; Ogden, R. W., A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models, J Elast, 61, 1-48 (2000) · Zbl 1023.74033
[72] Natali, A. N.; Pavan, P. G.; Carniel, E. L.; Lucisano, M. E.; Taglialavoro, G., Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons, Med Eng Phys, 27, 209-214 (2005)
[73] Criscione, J. C.; Douglas, A. S.; Hunter, W. C., Physically based strain invariant set for materials exhibiting transversely isotropic behavior, J Mech Phys Solids, 49, 871-897 (2001) · Zbl 0980.74012
[74] Belytschko, T., An overview of semidiscretization and time integration procedures, Comput Methods for Transient Anal, 1, 1-65 (1983) · Zbl 0542.73106
[75] Oakley, D. R.; Knight, N. F., Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures Part I. Formulation, Comput Methods Appl Mech Eng, 126, 67-89 (1995) · Zbl 1067.74602
[76] Sauve, R. G.; Metzger, D. R., Advances in Dynamic Relaxation Techniques for Nonlinear Finite Element Analysis, J Press Vessel Technol, 117, 170-176 (1995)
[77] Markolf, K. L.; Morris, J. M., The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces, J Bone Joint Surg, 56, 675-687 (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.