×

Generation of gravitational waves by a standing electromagnetic wave. (English) Zbl 1480.83037

Summary: The process of generating gravitational waves by a standing electromagnetic wave is considered. The description of gravitational waves coupled with the electromagnetic field is carried out on the basis of linearized Einstein gravity. It is shown that such gravitational-electromagnetic waves inside a Fabry-Perrot resonator lead to generation of the usual high-frequency transverse-traceless gravitational waves which propagate in two mutually opposite directions in empty space outside the resonator. A comparison of gravitational waves coupled with the electromagnetic field and free waves in empty space is carried out.

MSC:

83C35 Gravitational waves
83C50 Electromagnetic fields in general relativity and gravitational theory
78A40 Waves and radiation in optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields (1987) · Zbl 0043.19803
[2] M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments (Oxford University Press, Oxford, 2008), p. 547.
[3] Abbott, B. P., [KAGRA and LIGO Scientific and VIRGO Collaborations], “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Rel., 21, 3 (2018)
[4] Abbott, B. P., [LIGO Scientific and Virgo Collaborations]. “Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116, 061102 (2016)
[5] Abbott, B. P., [LIGO Scientific and Virgo Collaborations], “GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett., 116, 241103 (2016)
[6] Abbott, B. P., [LIGO Scientific and Virgo and Fermi-GBM and INTEGRAL Collaborations], “Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. Lett., 848, L13 (2017)
[7] Abbott, B. P., Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett., 848, L12 (2017)
[8] Gertsenshtein, M. E.; Pustovoit, V. I., On the detection of low frequency gravitational waves, Sov. Phys. JETP, 16, 433 (1962)
[9] Grishchuk, L. P.; Sazhin, M. V., Emission of gravitational waves by an electromagnetic cavity, Zh. Eksp. Teor. Fiz., 65, 441 (1973)
[10] Nikishov, A. I.; Ritus, V. I., Gravitational radiation of systems and the role of their force field, Phys. Usp., 53, 1093 (2011)
[11] Pustovoit, V. I., On the direct detection of gravitational waves, Phys. Usp., 59, 1034 (2016)
[12] Rudenko, V. N., Gravitational wave experiments in Russia, Phys. Usp., 60, 830 (2017)
[13] Ejlli, A.; Ejlli, D.; Cruise, A. M.; Pisano, G.; Grote, H., Upper limits on the amplitude of ultra-high-frequency gravitational waves from graviton to photon conversion, Eur. Phys. J. C, 79, 1032 (2019)
[14] Eddington, A. S., The propagation of gravitational waves, Proc. Roy. Soc. Lond. A, 102, 268 (1922) · JFM 49.0640.04
[15] Zeldovich, Ya. B.; Novikov, I. D., Relativistic Astrophysics (1983), Chicago: University of Chicago Press, Chicago
[16] Pustovoit, V. I.; Chernozatonsky, L. A., Parametric recording mechanisms of gravitational waves, Zh. Eksp. Teor. Fiz., 34, 241 (1981)
[17] Gertsenshtein, M. E., Wave resonance of light and gravitational waves, Sov. Phys. JETP, 14, 84 (1962)
[18] Zeldovich, Ya. B., Electromagnetic and gravitational waves in a stationary magnetic field, Sov. Phys. JETP, 38, 652 (1974)
[19] Gerlach, U. H., Beat frequency oscillations near charged black holes and other electrovacuum geometries, Phys. Rev. Lett., 32, 1023 (1974)
[20] Raffelt, G.; Stodolsky, L., Mixing of the photon with low mass particles, Phys. Rev. D, 37, 1237 (1988)
[21] Fargion, D., Prompt and delayed radio bangs at kilohertz by SN1987A: A test for gravitation-photon conversion, Grav. Cosmol., 1, 301 (1995)
[22] Marklund, M.; Brodin, G.; Dunsby, P. K. S., Radio wave emissions due to gravitational radiation, Astrophys. J., 536, 875 (2000)
[23] A. D. Dolgov and D. Ejlli, “Conversion of relic gravitational waves into photons in cosmological magnetic fields,” JCAP 1212, 003 (2012).
[24] Kolosnitsyn, N. I.; Rudenko, V. N., Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field, Phys. Scripta, 90, 074059 (2015)
[25] A. Dolgov and K. Postnov, “Electromagnetic radiation accompanying gravitational waves from black hole binaries,” JCAP 1709, 018 (2017).
[26] Ejlli, D.; Thandlam, V. R., Graviton-photon mixing, Phys. Rev. D, 99, 044022 (2019)
[27] Gladyshev, V. O.; Fomin, I. V.; Izmailov, G. N.; Morozov, A. N.; Pustovoit, V., On progress in gravitational waves recording, J. Phys. Conf. Ser., 1301, 012008 (2019)
[28] Pustovoit, V. I., Electromagnetic and gravitational waves conversion in a nonlinear dielectric medium by intense light source irradiation, J. Phys. Conf. Ser., 1348, 012008 (2019)
[29] Pustovoit, V. I., High frequency gravitational waves generation by optical methods, J. Phys. Conf. Ser., 1557, 012034 (2020)
[30] Grishchuk, L. P., The efficiency of gravitational wave emitters, Phys. Lett. A, 56, 255 (1976)
[31] L. P. Grishchuk, “Electromagnetic generators and detectors of gravitational waves,” gr-qc/0306013.
[32] Morozov, A. N.; Pustovoit, V. I., Generation and registration of coupled high-frequency gravitational waves, Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 1, 46 (2020)
[33] Hodgson, N.; Weber, H., Laser Resonators and Beam Propagation (2005), New York: Springer, New York
[34] Cruise, A. M.; Ingley, R. M. J., A prototype gravitational wave detector for 100-MHz, Class. Quant. Grav., 23, 6185 (2006) · Zbl 1117.85302
[35] Nishizawa, A., Laser-interferometric detectors for gravitational wave background at 100 MHz: detector design and sensitivity, Phys. Rev. D, 77, 022002 (2008)
[36] Morozov, A. N., Space-time with a fluctuating metric tensor model, J. Phys. Conf. Ser., 731, 012010 (2016)
[37] Fomin, I. V.; Morozov, A. N., The high-frequency gravitational waves in exact inflationary models with Gauss-Bonnet term, J. Phys. Conf. Ser., 798, 012088 (2017)
[38] Kadlecova, H.; Klimo, O.; Weber, S.; Korn, G., Gravitational wave generation by interaction of high power lasers with matter using shock waves, Eur. Phys. J. D, 71, 89 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.