×

Global strong solution and incompressible Navier-Stokes-Fourier-Poisson limit of the Vlasov-Poisson-Boltzmann system. (English) Zbl 1479.35595

MSC:

35Q20 Boltzmann equations
35Q83 Vlasov equations
35D35 Strong solutions to PDEs
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
78A25 Electromagnetic theory (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] D. Arsénio and L. Saint-Raymond, From the Vlasov-Maxwell-Boltzmann System to Incompressible Viscous Electro-Magneto-Hydrodynamics, EMS Monogr. Math., European Mathematical Society, Zürich, Switzerland, 2019. · Zbl 1427.76001
[2] C. Bardos, F. Golse, and D. Levermore, Fluid dynamic limits of kinetic equations I: Formal derivations, J. Stat. Phys., 63 (1991), pp. 323-344.
[3] C. Bardos, F. Golse, and D. Levermore, Fluid dynamic limits of kinetic equations II: Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math., 46 (1993), pp. 667-753. · Zbl 0817.76002
[4] C. Bardos, F. Golse, and D. Levermore, The acoustic limit for the Boltzmann equation, Arch. Ration. Mech. Anal., 153 (2000), pp. 177-204. · Zbl 0973.76075
[5] C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., 1 (1991), pp. 235-257. · Zbl 0758.35060
[6] R. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation, Comm. Pure Appl. Math., 33 (1980), pp. 651-666. · Zbl 0424.76060
[7] Y. Cao, Regularity of Boltzmann equation with external fields in convex domains of diffuse reflection, SIAM J. Math. Anal., 51 (2019), pp. 3195-3275, https://doi.org/10.1137/18M1234928. · Zbl 1419.35147
[8] Y. Cao, C. Kim, and D. Lee, Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains, Arch. Ration. Mech. Anal., 233 (2019), pp. 1027-1130. · Zbl 1419.82050
[9] C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, New York, 1994. · Zbl 0813.76001
[10] H. Chen, C. Kim, and Q. Li, Local well-posedness of Vlasov-Poisson-Boltzmann equation with generalized diffuse boundary condition, J. Stat. Phys., 179 (2020), pp. 535-631. · Zbl 1445.76100
[11] A. De Masi, R. Esposito, and J. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Comm. Pure Appl. Math., 42 (1989), pp. 1189-1214. · Zbl 0689.76024
[12] R. Duan and S. Liu, Compressible Navier-Stokes Approximation for the Boltzmann Equation in Bounded Domain, preprint, https://arxiv.org/abs/1806.09796, 2018.
[13] R. Duan and T. Yang, Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), pp. 2353-2387, https://doi.org/10.1137/090745775. · Zbl 1323.82036
[14] R. Duan, T. Yang, and H. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential Equations, 252 (2012), pp. 6356-6386. · Zbl 1247.35174
[15] R. Duan, T. Yang, and H. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Models Methods Appl. Sci., 23 (2013), pp. 979-1028. · Zbl 1437.76056
[16] R. Esposito, Y. Guo, C. Kim, and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Ann. PDE, 4 (2018), 1. · Zbl 1403.35195
[17] F. Golse, From the Boltzmann equation to the Euler equations in the presence of boundaries, Comput. Math. Appl., 65 (2013), pp. 815-830. · Zbl 1319.76009
[18] F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), pp. 81-161. · Zbl 1060.76101
[19] M. Guo, N. Jiang, and Y. L. Luo, From Vlasov-Poisson-Boltzmann System to Incompressible Navier-Stokes-Fourier-Poisson System: Convergence for Classical Solutions, preprint, https://arxiv.org/abs/2006.16514, 2020.
[20] Y. Guo, The Vlasov-Poisson-Boltzmann system near vacuum, Comm. Math. Phys., 218 (2001), pp. 293-313. · Zbl 0981.35057
[21] Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), pp. 1104-1135. · Zbl 1027.82035
[22] Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), pp. 593-630. · Zbl 1029.82034
[23] Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), pp. 626-687. · Zbl 1089.76052
[24] Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197 (2010), pp. 713-809. · Zbl 1291.76276
[25] Y. Guo and J. Jang, Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 299 (2010), pp. 469-501. · Zbl 1198.35273
[26] Y. Guo, J. Jang, and N. Jiang, Local Hilbert expansion for the Boltzmann equation, Kinet. Relat. Models, 2 (2009), pp. 205-214. · Zbl 1372.76089
[27] Y. Guo, J. Jang, and N. Jiang, Acoustic limit for the Boltzmann equation in optimal scaling, Comm. Pure Appl. Math., 63 (2010), pp. 337-361. · Zbl 1187.35149
[28] Y. Guo and Y. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), pp. 2165-2208. · Zbl 1258.35157
[29] Y. Guo and Q. H. Xiao, Global Hilbert expansion for the relativistic Vlasov-Maxwell-Boltzmann system, Comm. Math. Phys., 384 (2021), pp. 341-401. · Zbl 1468.35204
[30] J. Jang, Vlasov-Maxwell-Boltzmann diffusive limit, Arch. Ration. Mech. Anal., 194 (2009), pp. 531-584. · Zbl 1347.76062
[31] N. Jiang and Y. Luo, From Vlasov-Maxwell-Boltzmann System to Two-Fluid Incompressible Navier-Stokes-Fourier-Maxwell System with Ohm’s Law: Convergence for Classical Solutions, preprint, https://arxiv.org/abs/1905.04739, 2019.
[32] N. Jiang, Y. Luo, and T.-F. Zhang, Incompressible Navier-Stokes-Fourier-Maxwell System with Ohm’s Law Limit from Vlasov-Maxwell-Boltzmann System: Hilbert Expansion Approach, preprint, https://arxiv.org/abs/2007.02286v1, 2020.
[33] H.-L. Li, T. Yang, and M. Zhong, Spectrum analysis and optimal decay rates of the bipolar Vlasov-Poisson-Boltzmann equations, Indiana Univ. Math. J., 65 (2016), pp. 665-725. · Zbl 1348.35008
[34] H.-L. Li, T. Yang, and M. Zhong, Diffusion limit of the Vlasov-Poisson-Boltzmann system, Kinet. Relat. Models, 14 (2021), pp. 211-255.
[35] P.-L. Lions, On kinetic equations, in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, Japan, 1991, pp. 1173-1185. · Zbl 0806.35143
[36] P.-L. Lions and N. Masmoudi, From the Boltzmann equations to the equations of incompressible fluid mechanics. \textupI, II, Arch. Ration. Mech. Anal., 158 (2001), pp. 173-193, 195-211. · Zbl 0987.76088
[37] S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 210 (2000), pp. 447-466. · Zbl 0983.45007
[38] L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal., 166 (2003), pp. 47-80. · Zbl 1016.76071
[39] Y. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differential Equations, 253 (2012), pp. 273-297. · Zbl 1239.35117
[40] Y. Wang, Decay of the two-species Vlasov-Poisson-Boltzmann system, J. Differential Equations, 254 (2013), pp. 2304-2340. · Zbl 1335.76046
[41] Y. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), pp. 256-271. · Zbl 1211.35228
[42] W. Wu, F. Zhou, and Y. Li, Incompressible Euler limit of the Boltzmann equation in the whole space and a periodic box, NoDEA Nonlinear Differential Equations Appl., 26 (2019), 35. · Zbl 1428.35269
[43] Q. Xiao, L. Xiong, and H. Zhao, The Vlasov-Poisson-Boltzmann system for the whole range of cutoff soft potentials, J. Funct. Anal., 272 (2017), pp. 166-226. · Zbl 1457.76205
[44] T. Yang and H. Yu, Optimal convergence rates of classical solutions for Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 301 (2011), pp. 319-355. · Zbl 1233.35040
[45] T. Yang, H. Yu, and H. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Ration. Mech. Anal., 182 (2006), pp. 415-470. · Zbl 1104.76086
[46] T. Yang and H. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), pp. 569-605. · Zbl 1129.35023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.