Scaling limits and stochastic homogenization for some nonlinear parabolic equations. (English) Zbl 1479.35058

Summary: The aim of this paper is twofold. The first is to study the asymptotics of a parabolically scaled, continuous and space-time stationary in time version of the well-known Funaki-Spohn model in Statistical Physics. After a change of unknowns requiring the existence of a space-time stationary eternal solution of a stochastically perturbed heat equation, the problem transforms to the qualitative homogenization of a uniformly elliptic, space-time stationary, divergence form, nonlinear partial differential equation, the study of which is the second aim of the paper. An important step is the construction of correctors with the appropriate behavior at infinity.


35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35K15 Initial value problems for second-order parabolic equations
35K59 Quasilinear parabolic equations
35R60 PDEs with randomness, stochastic partial differential equations
Full Text: DOI arXiv


[1] Armstrong, S.; Bordas, A.; Mourrat, J. C., Quantitative stochastic homogenization and regularity theory of parabolic equations, Anal. PDE, 11, 8, 1945-2014 (2018) · Zbl 1388.60103
[2] Aubin, J.-P., Un théorème de compacité, C. R. Acad. Sci. Paris, 256, 5042-5044 (1963) · Zbl 0195.13002
[3] Delarue, F.; Rhodes, R., Stochastic homogenization of quasilinear PDEs with a spatial degeneracy, Asymptot. Anal., 61, 2, 61-90 (2009) · Zbl 1180.35591
[4] Efendiev, Y.; Jiang, L.; Pankov, A., Individual homogenization of nonlinear parabolic operators, Appl. Anal., 85, 12, 1433-1457 (2006) · Zbl 1132.35009
[5] Efendief, Y.; Pankov, A., Homogenization of nonlinear random parabolic equations, Adv. Differ. Equ., 10, 11, 123-1260 (2005) · Zbl 1103.35015
[6] Efendief, Y.; Pankov, A., Numerical homogenization of nonlinear random parabolic equations, SIAM J. Multiscale Model. Simul., 2, 2, 237-268 (2004) · Zbl 1181.76113
[7] Evans, L. C., Partial Differential Equations, Graduate Studies in Mathematics, vol. 19 (1998), American Mathematical Society: American Mathematical Society Providence, RI
[8] Funaki, T.; Spohn, H., Motion by mean curvature from the Ginzburg-Landau interface model, Commun. Math. Phys., 185, 1, 1-36 (1997) · Zbl 0884.58098
[9] Fannjiang, A.; Komorowski, T., An invariance principle for diffusion in turbulence, Ann. Probab., 27, 2, 751-781 (1999) · Zbl 0943.60030
[10] Kosygina, E.; Varadhan, S. R., Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium, CPAM, 61, 6, 816-847 (2008) · Zbl 1144.35008
[11] Komorowski, T.; Olla, S., On homogenization of time-dependent random flows, Probab. Theory Relat. Fields, 121, 1, 98-116 (2001) · Zbl 0996.60040
[12] Krylov, N. V., Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, vol. 96 (2008), American Mathematical Society · Zbl 1147.35001
[13] Landim, C.; Olla, S.; Yau, H. T., Convection-diffusion equation with space-time ergodic random flow, Probab. Theory Relat. Fields, 112, 203-220 (1998) · Zbl 0914.60070
[14] Lions, J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires (1969), Dunod, Gauthier-Villars: Dunod, Gauthier-Villars Paris · Zbl 0189.40603
[15] Rhodes, R., On homogenization of space-time dependent and degenerate random flows, Stoch. Process. Appl., 117, 10, 1561-1585 (2007) · Zbl 1127.60027
[16] Zhikov, V. V.E.; Kozlov, S. M.; Oleinik, O. A.E., Averaging of parabolic operators, Tr. Mosk. Mat. Obŝ., 45, 182-236 (1982) · Zbl 0531.35041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.