×

Local well-posedness for boundary layer equations of Euler-Voigt equations in analytic setting. (English) Zbl 07433257

Summary: From the formal expansion of the solutions of Euler-Voigt equations in \(\mathbb{R}_+^2\) with no-slip boundary conditions, the boundary layer equations of Euler-Voigt equations to Euler equations are obtained. In case of the analytic data, one obtains the local existence and uniqueness of the solutions for the boundary layer equations by abstract Cauchy-Kovalevskaya theorem.

MSC:

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
35Q31 Euler equations
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bardos, C.; Titi, E. S., Mathematics and turbulence: where do we stand?, J. Turbul., 14, 3, 42-76 (2013)
[2] Bona, J. L.; Wu, J., The zero-viscosity limit of the 2D Navier-Stokes equations, Stud. Appl. Math., 109, 4, 265-278 (2010) · Zbl 1141.35431
[3] Busuioc, A. V.; Iftimie, D., Weak solutions for the α-Euler equations and convergence to Euler, Nonlinearity, 30, 12, 4534-4557 (2017) · Zbl 1393.35161
[4] Caflisch, R. E.; Sammartino, M., Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space I. Existence for Euler and Prandtl equations, Commun. Math. Phys., 192, 2, 433-461 (1998) · Zbl 0913.35102
[5] Caflisch, R. E.; Sammartino, M., Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space II. Construction of the Navier-Stokes equations, Commun. Math. Phys., 192, 2, 463-491 (1998) · Zbl 0913.35103
[6] Cao, Y.; Lunasin, E.; Titi, E. S., Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4, 823-848 (2006) · Zbl 1127.35034
[7] Cheskidov, A., Boundary layer for the Navier-Stokes-alpha model of fluid turbulence, Arch. Ration. Mech. Anal., 172, 3, 333-362 (2004) · Zbl 1094.76027
[8] E, W., Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin., 16, 2, 207-218 (2000) · Zbl 0961.35101
[9] Holm, D. D.; Marsden, J. E.; Ratiu, T. S., Euler-Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 80, 4173-4176 (1998)
[10] Kato, T., Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, (Chern, S. S., Seminar on Nonlinear Partial Differential Equations (1984), Mathematical Sciences Research Institute Publications: Mathematical Sciences Research Institute Publications New York), 85-98
[11] Kukavica, I.; Vicol, V., On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci., 11, 1, 267-290 (2013)
[12] Larios, A.; Titi, E. S., On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic model, Discrete Contin. Dyn. Syst., Ser. B, 14, 2, 603-627 (2010) · Zbl 1202.35172
[13] Layton, W.; Lewandowi, R., On a well-posed turbulence model, Discrete Contin. Dyn. Syst., Ser. B, 6, 111-128 (2006) · Zbl 1089.76028
[14] Lopes Filho, M. C., Boundary layers and the vanishing viscosity limit for incompressible 2D flow, (Lin, Fanghua; Wang, Xueping; Zhang, Ping, Lect. Anal. Nonlin. PDEs, vol. 1 (2007), HEP and International Press: HEP and International Press Beijing/Boston), 1-31 · Zbl 1291.35189
[15] Lopes Filho, M. C.; Mazzucato, A. L.; Nussenzveig Lopes, H. J., Vanishing viscosity limit for incompressible flow inside a rotating circle, Physica D, 237, 10-12, 1324-1333 (2008) · Zbl 1143.76416
[16] Lopes Filho, M. C.; Mazzucato, A. L.; Nussenzveig Lopes, H. J.; Taylor, M., Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows, Bull. Braz. Math. Soc. New, 39, 4, 471-513 (2008) · Zbl 1178.35288
[17] Lopes Filho, M. C.; Nussenzveig Lopes, H. J.; Titi, E. S.; Zang, A., Convergence of the 2D Euler-α to Euler equations in the Dirichlet case: indifference to boundary layers, Physica D, 292/293, 51-61 (2015) · Zbl 1364.35277
[18] Lopes Filho, M. C.; Nussenzveig Lopes, H. J.; Titi, E. S.; Zang, A., Approximation of 2D Euler equations by the second-grade fluid equations with Dirichlet boundary conditions, J. Math. Fluid Mech., 17, 2, 327-340 (2015) · Zbl 1328.35153
[19] Maekawa, Y., On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half plane, Commun. Pure Appl. Math., 67, 7, 1045-1128 (2014) · Zbl 1301.35092
[20] Mazzucato, A.; Taylor, M., Vanishing viscosity plane parallel channel flow and related singular perturbation problems, Anal. PDE, 1, 1, 35-93 (2008) · Zbl 1160.35329
[21] Mazzucato, A.; Taylor, M., Vanishing viscosity limits for a class of circular pipe flows, Commun. Partial Differ. Equ., 36, 2, 328-361 (2010) · Zbl 1220.35121
[22] Matsui, S., Example of zero viscosity limit for two dimensional nonstationary Navier-Stokes flows with boundary, Jpn. J. Ind. Appl. Math., 11, 1, 155-170 (1994) · Zbl 0797.76011
[23] Nishida, T., A note on a theorem of Nirenberg, J. Differ. Geom., 12, 629-633 (1977) · Zbl 0368.35007
[24] Prandtl, L., Über flüssigkeits-bewegung bei sehr kleiner reibung (1905), Teubner: Teubner Germany · JFM 36.0800.02
[25] Safonov, M. V., The abstract Cauchy-Kovalevskaya theorem in a weighted Banach space, Commun. Pure Appl. Math., 48, 6, 629-637 (1995) · Zbl 0836.35004
[26] Wang, X.; Wang, Y.; Xin, Z., Boundary layer in incompressible Navier-Stokes equations with Navier boundary conditions for the vanishing viscosity limit, Commun. Math. Sci., 8, 4, 965-998 (2010) · Zbl 1372.76035
[27] Zang, A., Global well-posedness for Euler-Voigt equation, Pure Appl. Math., 34, 1, 1-6 (2018), (in Chinese) · Zbl 1413.35386
[28] Zang, A., Kato’s type theorems for the convergence of Euler-Voigt equations to Euler equations with Drichilet boundary conditions, Discrete Contin. Dyn. Syst., 39, 9, 4945-4953 (2019) · Zbl 1415.35222
[29] Zang, A.; Zhong, J., Higher-order regularity to the Euler-Voigt equations, J. Yichun Univ., 40, 12, 1-3 (2018), (in Chinese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.