×

Numerical methods for particle agglomeration and breakage in lid-driven cavity flows at low Reynolds numbers. (English) Zbl 07431714

Summary: In this paper, a rigorous computational study is carried out on the three numerical methods: cell average technique (CAT), weighted finite volume scheme (WFVS), and quadrature method of moments (QMOM). Each method is analyzed to solve the population balance equation coupled with hydrodynamics. Different test cases have been considered for aggregation, breakage, simultaneous aggregation and breakage processes with four different aggregation kernels and uniform breakage function. Both the advantages and disadvantages of those methods are thoroughly investigated for the PBE coupled with hydrodynamics. Based on accuracy and efficiency, it is recommended that the WFVS is a smart choice for computing number density and moments in the case of inhomogeneous PBE.

MSC:

76-XX Fluid mechanics
65-XX Numerical analysis

Software:

OPQ
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Attarakih, M., Integral formulation of the population balance equation: Application to particulate systems with particle growth, Comput. Chem. Eng., 48, 1-13 (2013)
[2] Attarakih, M. M.; Bart, H.-J.; Faqir, N. M., Numerical solution of the spatially distributed population balance equation describing the hydrodynamics of interacting liquid-liquid dispersions, Chem. Eng. Sci., 59, 12, 2567-2592 (2004)
[3] Attarakih, M.; Drumm, C.; Bart, H. J., Solution of the population balance equation using the sectional quadrature method of moments (SQMOM), Chem. Eng. Sci., 64, 4, 742-752 (2009)
[4] Attarakih, M.; Jaradat, M.; Drumm, C.; Bart, H.; Tiwari, S.; Sharma, V.; Kuhnert, J.; Klar, A., Solution of the population balance equation using the one primary and one secondary particle method (OPOSPM), Comp. Aid Chem. Eng., 26, 1333-1338 (2009)
[5] Barrett, J.; Jheeta, J., Improving the accuracy of the moments method for solving the aerosol general dynamic equation, J. Aerosol Sci., 27, 8, 1135-1142 (1996)
[6] Barrett, J.; Webb, N., A comparison of some approximate methods for solving the aerosol general dynamic equation, J. Aerosol Sci., 29, 1-2, 31-39 (1998)
[7] Dürr, R.; Bück, A., Approximate moment methods for population balance equations in particulate and bioengineering processes, Processes, 8, 414 (2020)
[8] Dürr, R.; Müller, T.; Duvigneau, S.; Kienle, A., An efficient approximate moment method for multi-dimensional population balance models - Application to virus replication in multi-cellular systems, Chem. Eng. Sci., 160, 321-334 (2017)
[9] Erturk, E., Discussion on driven cavity flow, Internat. J. Numer. Methods Fluids, 60, 275-294 (2009) · Zbl 1162.76047
[10] Filbet, F.; Laurençot, P., Numerical simulation of the Smoluchowski coagulation equation, SIAM J. Sci. Comput., 25, 6, 2004-2028 (2004) · Zbl 1086.65123
[11] Garrett, C. K.; Hauck, C. D., A comparison of moment closures for linear kinetic transport equations: The line source benchmark, Transport Theory Statist. Phys., 42, 6-7, 203-235 (2013) · Zbl 1302.82088
[12] Gautschi, W., Orthogonal Polynomials: Computation and Approximation (2004), Oxford University Press on Demand · Zbl 1130.42300
[13] Griebel, M.; Dornseifer, T.; Neunhoeffer, T., Numerical Simulation in Fluid Dynamics: A Practical Introduction, Vol. 3 (1997), Siam · Zbl 0945.76001
[14] Grosch, R.; Briesen, H.; Marquardt, W.; Wulkow, M., Generalization and numerical investigation of QMOM, AIChE J., 53, 1, 207-227 (2007)
[15] Hauck, C. D., High-order entropy-based closures for linear transport in slab geometry, Commun. Math. Sci., 9, 1, 187-205 (2011) · Zbl 1284.82050
[16] Hounslow, M.; Ryall, R.; Marshall, V., A discretized population balance for nucleation, growth, and aggregation, AIChE J., 34, 11, 1821-1832 (1988)
[17] Hulburt, H. M.; Katz, S., Some problems in particle technology: A statistical mechanical formulation, Chem. Eng. Sci., 19, 8, 555-574 (1964)
[18] John, V.; Angelov, I.; Öncül, A.; Thévenin, D., Techniques for the reconstruction of a distribution from a finite number of its moments, Chem. Eng. Sci., 62, 11, 2890-2904 (2007)
[19] Kaur, G.; Kumar, J.; Heinrich, S., A weighted finite volume scheme for multivariate aggregation population balance equation, Comput. Chem. Eng., 101, 1-10 (2017)
[20] Kostoglou, M., Extended cell average technique for the solution of coagulation equation, J. Colloid Interface Sci., 306, 1, 72-81 (2007)
[21] Kumar, J., Numerical Approximations of Population Balance Equations in Particulate Systems (2007), Docupoint
[22] Kumar, J.; Kaur, G.; Tsotsas, E., An accurate and efficient discrete formulation of aggregation population balance equation, Kinet. Relat. Models, 9, 2 (2016) · Zbl 1333.45008
[23] Kumar, J.; Peglow, M.; Warnecke, G.; Heinrich, S.; Mörl, L., Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique, Chem. Eng. Sci., 61, 10, 3327-3342 (2006)
[24] Kumar, S.; Ramkrishna, D., On the solution of population balance equations by discretization—II. A moving pivot technique, Chem. Eng. Sci., 51, 8, 1333-1342 (1996)
[25] Kumar, S.; Ramkrishna, D., On the solution of population balance equations by discretization-I. A fixed pivot technique, Chem. Eng. Sci., 51, 8, 1311-1332 (1996)
[26] Kurganov, A.; Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160, 1, 241-282 (2000) · Zbl 0987.65085
[27] Laurent, F.; Nguyen, T. T., Realizable second-order finite-volume schemes for the advection of moment sets of the particle size distribution, J. Comput. Phys., 337, 309-338 (2017) · Zbl 1415.76686
[28] Lebaz, N.; Cockx, A.; Spérandio, M.; Morchain, J., Reconstruction of a distribution from a finite number of its moments: a comparative study in the case of depolymerization process, Comput. Chem. Eng., 84, 326-337 (2016)
[29] Lee, K.; Matsoukas, T., Simultaneous coagulation and break-up using constant-N Monte Carlo, Powder Technol., 110, 1-2, 82-89 (2000)
[30] Madadi-Kandjani, E.; Passalacqua, A., An extended quadrature-based moment method with log-normal kernel density functions, Chem. Eng. Sci., 131, 323-339 (2015)
[31] Magnus, W.; Oberhettinger, F.; Soni, R. P.; Berger, E., Formulas and theorems for the special functions of mathematical physics, Amer. J. Phys., 35, 6, 550-551 (1967)
[32] Mahoney, A. W.; Ramkrishna, D., Efficient solution of population balance equations with discontinuities by finite elements, Chem. Eng. Sci., 57, 7, 1107-1119 (2002)
[33] Marchisio, D. L.; Fox, R. O., Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci., 36, 1, 43-73 (2005)
[34] Marchisio, D. L.; Fox, R. O., Computational Models for Polydisperse Particulate and Multiphase Systems (2013), Cambridge University Press
[35] Marchisio, D. L.; Pikturna, J. T.; Fox, R. O.; Vigil, R. D.; Barresi, A. A., Quadrature method of moments for population-balance equations, AIChE J., 49, 5, 1266-1276 (2003)
[36] Marchisio, D. L.; Vigil, R. D.; Fox, R. O., Quadrature method of moments for aggregation-breakage processes, J. Colloid Interface Sci., 258, 2, 322-334 (2003)
[37] McGraw, R., Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol., 27, 2, 255-265 (1997)
[38] Müller, L.; Klar, A.; Schneider, F., A numerical comparison of the method of moments for the population balance equation, Math. Comput. Simulation, 165, 26-55 (2019) · Zbl 07316735
[39] Nguyen, T. T.; Laurent, F.; Fox, R. O.; Massot, M., Solution of population balance equations in applications with fine particles: mathematical modeling and numerical schemes, J. Comput. Phys., 325, 129-156 (2016) · Zbl 1375.76204
[40] Pollack, M.; Salenbauch, S.; Marchisio, D.; Hasse, C., Bivariate extensions of the Extended Quadrature Method of Moments (EQMOM) to describe coupled droplet evaporation and heat-up, J. Aerosol Sci., 92, 53-69 (2016)
[41] Ramkrishna, D., Population Balances: Theory and Applications To Particulate Systems in Engineering (2000), Elsevier
[42] Saha, J.; Kumar, J.; Bück, A.; Tsotsas, E., Finite volume approximations of breakage population balance equation, Chem. Eng. Res. Des., 110, 114-122 (2016)
[43] Sakai, M.; Mori, Y.; Sun, X.; Takabatake, K., Recent progress on mesh-free particle methods for simulations of multi-phase flows: A review, KONA, 37, 132-144 (2020)
[44] Scott, W. T., Analytic studies of cloud droplet coalescence I, J. Atmos. Sci., 25, 1, 54-65 (1968)
[45] Shankar, P.; Deshpande, M., Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech., 32, 93-136 (2000) · Zbl 0988.76006
[46] Shiea, M.; Buffo, A.; Vanni, M.; Marchisio, D., Numerical methods for the solution of population balance equations coupled with computational fluid dynamics, Ann. Rev. Chem. Biomol. Eng., 11, 18.1-18.28 (2020)
[47] Singh, R.; Saha, J.; Kumar, J., Adomian decomposition method for solving fragmentation and aggregation population balance equations, J. Appl. Math. Comput., 48, 1-2, 265-292 (2015) · Zbl 1316.65117
[48] Vale, H. M.; McKenna, T. F., Solution of the population balance equation for two-component aggregation by an extended fixed pivot technique, Ind. Eng. Chem. Res., 44, 20, 7885-7891 (2005)
[49] Wheeler, J., Modified moments and Gaussian quadratures, Rocky Mountain J. Math., 4, 2, 287-296 (1974) · Zbl 0309.65009
[50] Yuan, C.; Laurent, F.; Fox, R., An extended quadrature method of moments for population balance equations, J. Aerosol Sci., 51, 1-23 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.