×

3D mixed virtual element formulation for dynamic elasto-plastic analysis. (English) Zbl 1477.74117

Summary: The virtual element method (VEM) for dynamic analyses of nonlinear elasto-plastic problems undergoing large deformations is outlined within this work. VEM has been applied to various problems in engineering, considering elasto-plasticity, multiphysics, damage, elastodynamics, contact- and fracture mechanics. This work focuses on the extension of VEM formulations towards dynamic elasto-plastic applications. Hereby low-order ansatz functions are employed in three dimensions with elements having arbitrary convex or concave polygonal shapes. The formulations presented in this study are based on minimization of potential function for both the static as well as the dynamic behavior. Additionally, to overcome the volumetric locking phenomena due to elastic and plastic incompressibility conditions, a mixed formulation based on a Hu-Washizu functional is adopted. For the implicit time integration scheme, Newmark method is used. To show the model performance, various numerical examples in 3D are presented.

MSC:

74S99 Numerical and other methods in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)

Software:

AceFEM
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Beirão da Veiga, L.; Brezzi, F.; Marini, LD; Russo, A., The hitchhiker’s guide to the virtual element method, Math Models Methods Appl Sci, 24, 8, 1541-1573 (2014) · Zbl 1291.65336
[2] Beirão da Veiga L, Lipnikov K, Manzini G (2013) The mimetic finite difference method, vol 11, 1st edn. Modeling. Simulations and Applications, Springer · Zbl 1286.65141
[3] Gain, AL; Talischi, C.; Paulino, GH, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput Methods Appl Mech Eng, 282, 132-160 (2014) · Zbl 1423.74095
[4] Wriggers, P.; Rust, W.; Reddy, B., A virtual element method for contact, Comput Mech, 58, 1039-1050 (2016) · Zbl 1398.74420
[5] Aldakheel, F.; Hudobivnik, B.; Artioli, E.; Beirão da Veiga, L.; Wriggers, P., Curvilinear virtual elements for contact mechanics, Comput Methods Appl Mech Eng, 372, 113394 (2020) · Zbl 07337889
[6] Hudobivnik, B.; Aldakheel, F.; Wriggers, P., Low order 3d virtual element formulation for finite elasto-plastic deformations, Comput Mech, 63, 253-269 (2018) · Zbl 1468.74085
[7] Aldakheel, F.; Hudobivnik, B.; Wriggers, P., Virtual elements for finite thermo-plasticity problems, Comput Mech, 64, 1347-1360 (2019) · Zbl 1464.74382
[8] Wriggers, P.; Hudobivnik, B., A low order virtual element formulation for finite elasto-plastic deformations, Comput Methods Appl Mech Eng, 327, 459-477 (2017) · Zbl 1439.74070
[9] Wriggers, P.; Hudobivnik, B.; Korelc, J.; Onate, E.; Peric, D., Efficient low order virtual elements for anisotropic materials at finite strains, Advances in computational plasticity, 417-434 (2017), Cham: Springer, Cham
[10] Wriggers, P.; Hudobivnik, B.; Schröder, J.; Soric, J.; Wriggers, P.; Allix, O., Finite and virtual element formulations for large strain anisotropic material with inextensive fibers, Multiscale modeling of heterogeneous structures, 205-231 (2018), Heidelberg: Springer, Heidelberg
[11] Reddy, BD; van Huyssteen, D., A virtual element method for transversely isotropic elasticity, Comput Mech, 64, 4, 971-988 (2019) · Zbl 1462.74159
[12] Artioli, E.; Beirão da Veiga, L.; Dassi, F., Curvilinear virtual elements for 2d solid mechanics applications, Comput Methods Appl Mech Eng, 359, 112667 (2020) · Zbl 1441.74229
[13] Chi, H.; Beirão da Veiga, L.; Paulino, G., Some basic formulations of the virtual element method (VEM) for finite deformations, Comput Methods Appl Mech Eng, 318, 148-192 (2017) · Zbl 1439.74397
[14] Wriggers, P.; Reddy, B.; Rust, W.; Hudobivnik, B., Efficient virtual element formulations for compressible and incompressible finite deformations, Comput Mech, 60, 253-268 (2017) · Zbl 1386.74146
[15] Hussein, A.; Aldakheel, F.; Hudobivnik, B.; Wriggers, P.; Guidault, P-A; Allix, O., A computational framework for brittle crack propagation based on an efficient virtual element method, Finite Elem Anal Des, 159, 15-32 (2019)
[16] Aldakheel, F.; Hudobivnik, B.; Hussein, A.; Wriggers, P., Phase-field modeling of brittle fracture using an efficient virtual element scheme, Comput Methods Appl Mech Eng, 341, 443-466 (2018) · Zbl 1440.74352
[17] Hussein, A.; Hudobivnik, B.; Wriggers, P., A combined adaptive phase field and discrete cutting method for the prediction of crack paths, Comput Methods Appl Mech Eng, 372, 113329 (2020) · Zbl 07337832
[18] Hill, R., Acceleration wave in solids, J Mech Phys Solids, 10, 1-16 (1962) · Zbl 0111.37701
[19] Hallquist JO (1984) Nike 2D: an implicit, finite deformation, finite element code for analyzing the static and dynamic response of two-dimensional solids. Technical Report. UCRL-52678, Lawrence Livermore National Laboratory, University of California, Livermore, CA
[20] Simo, JC, Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput Methods Appl Mech Eng, 99, 61-112 (1992) · Zbl 0764.73089
[21] Lodygowski, T.; Lengnick, M.; Perzyna, P.; Stein, E., Viscoplastic numerical analysis of dynamic plastic strain localization for a ductile material, Arch Mech, 46, 1-25 (1994) · Zbl 0822.73029
[22] Lodygowski, T.; Perzyna, P., Numerical modelling of localized fracture of inelastic solids in dynamic loading processes, Int J Numer Meth Eng, 40, 4137-4158 (1997) · Zbl 0974.74559
[23] Radovitzky, R.; Ortiz, M., Error estimation and adaptive meshing in strongly nonlinear dynamic problems, Comput Methods Appl Mech Eng, 172, 203-240 (1999) · Zbl 0957.74058
[24] Glema, A.; Lodygowski, T.; Perzyna, P., Interaction of deformation waves and localization phenomena in inelastic solids, Comput Methods Appl Mech Eng, 183, 123-140 (2000) · Zbl 1003.74039
[25] Park, K.; Chi, H.; Paulino, G., On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration, Comput Methods Appl Mech Eng, 356, 669-684 (2019) · Zbl 1441.74269
[26] Cihan M, Aldakheel F, Hudobivnik B, Wriggers P (2021) Virtual element formulation for finite strain elastodynamics. arXiv preprint arXiv:2002.02680 · Zbl 07340338
[27] Beirão da Veiga, L.; Lovadina, C.; Mora, D., A virtual element method for elastic and inelastic problems on polytope meshes, Comput Methods Appl Mech Eng, 295, 327-346 (2015) · Zbl 1423.74120
[28] Nadler, B.; Rubin, M., A new 3-d finite element for nonlinear elasticity using the theory of a cosserat point, Int J Solids Struct, 40, 4585-4614 (2003) · Zbl 1054.74057
[29] Mueller-Hoeppe, DS; Loehnert, S.; Wriggers, P., A finite deformation brick element with inhomogeneous mode enhancement, Int J Numer Meth Eng, 78, 1164-1187 (2009) · Zbl 1183.74297
[30] Krysl, P., Mean-strain 8-node hexahedron with optimized energy-sampling stabilization, Finite Elem Anal Des, 108, 41-53 (2016)
[31] Newmark, NM, A method of computation for structural dynamics, Proc ASCE J Eng Mech, 85, 67-94 (1959)
[32] Wood, WL, Practical time-stepping schemes (1990), Oxford: Clarendon Press, Oxford · Zbl 0694.65043
[33] Korelc, J.; Stupkiewicz, S., Closed-form matrix exponential and its application in finite-strain plasticity, Int J Numer Meth Eng, 98, 960-987 (2014) · Zbl 1352.74482
[34] Washizu, K., Variational methods in elasticity and plasticity (1975), Oxford: Pergamon Press, Oxford · Zbl 0339.73035
[35] Simo, JC; Taylor, RL; Pister, KS, Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput Methods Appl Mech Eng, 51, 177-208 (1985) · Zbl 0554.73036
[36] Korelc, J.; Wriggers, P., Automation of finite element methods (2016), Berlin: Springer, Berlin · Zbl 1367.74001
[37] Ahmad, B.; Alsaedi, A.; Brezzi, F.; Marini, L.; Russo, A., Equivalent projectors for virtual element methods, Comput Math Appl, 66, 376-391 (2013) · Zbl 1347.65172
[38] Simo JC (1998) Numerical analysis and simulation of plasticity In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol 6, pp 179-499, North-Holland · Zbl 0930.74001
[39] Taylor, GI, The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations, Proc R Soc Lond A Math Phys Sci, 194, 1038, 289-299 (1948)
[40] Kamoulakos A (1990) A simple benchmark for impact. Bench Mark, pp 31-35
[41] Zhu, Y.; Cescotto, S., Unified and mixed formulation of the 4 node quadrilateral elements by assumed strain method: application to thermomechanical problems, Int J Numer Methods Eng, 38, 685-716 (1995) · Zbl 0823.73074
[42] Camacho, G.; Ortiz, M., Adaptive lagrangian modelling of ballistic penetration of metallic targets, Comput Methods Appl Mech Eng, 142, 269-301 (1997) · Zbl 0892.73056
[43] Li, B.; Habbal, F.; Ortiz, M., Optimal transportation meshfree approximation schemes for fluid and plastic flows, Int J Numer Meth Eng, 83, 12, 1541-1579 (2010) · Zbl 1202.74200
[44] Kumar, S.; Danas, K.; Kochmann, DM, Enhanced local maximum-entropy approximation for stable meshfree simulations, Comput Methods Appl Mech Eng, 344, 858-886 (2019) · Zbl 1440.65216
[45] Taylor, RL; Papadopoulos, P., On a finite element method for dynamic contact/impact problems, Int J Numer Meth Eng, 36, 12, 2123-2140 (1993) · Zbl 0774.73072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.