Phase-field approach in elastoplastic solids: application of an iterative staggered scheme and its experimental validation. (English) Zbl 1480.74283

Summary: The numerical assessment of the crack development in structures subjected to plastic deformations using a phase-field approach is investigated in the present study. By relying on distinctive features of phase-field diffusive crack concept, a recently-developed iterative staggered algorithm is employed for implementation of the overall system of equations, in which one can achieve results that are insensitive to the chosen value of the load increment. This procedure offers advantage in convergence at rather less computational time than the popular standard staggered algorithms, while it maintains the desired solution accuracy. By emphasizing the application of this numerical treatment in phase-field concept in an elastoplastic material framework, the choice of utilizing a plastic work threshold value and its influence on inelastic and post-critical material behavior is elaborated. The numerical performance of the specified phase-field model is evaluated using existing fracture benchmarks in literature, as well as, from a performed experimental tensile test sample.


74R20 Anelastic fracture and damage
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74N99 Phase transformations in solids
74S05 Finite element methods applied to problems in solid mechanics


Full Text: DOI


[1] Francfort, GA; Marigo, J-J, Revisiting brittle fracture as an energy minimization problem, J Mech Phys Solids, 46, 1319-1342 (1998) · Zbl 0966.74060
[2] Bourdin, B.; Francfort, GA; Marigo, J-J, Numerical experiments in revisited brittle fracture, J Mech Phys Solids, 48, 797-826 (2000) · Zbl 0995.74057
[3] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput Methods Appl Mech Eng, 199, 2765-2778 (2010) · Zbl 1231.74022
[4] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int J Numer Methods Eng, 83, 1273-1311 (2010) · Zbl 1202.74014
[5] Hakim, V.; Karma, A., Laws of crack motion and phase-field models of fracture, J Mech Phys Solids, 57, 342-368 (2009) · Zbl 1421.74089
[6] Borden, MJ; Verhoosel, CV; Scott, MA; Hughes, TJR; Landis, CM, A phase-field description of dynamic brittle fracture, Comput Methods Appl Mech Eng, 217, 77-95 (2012) · Zbl 1253.74089
[7] Borden, MJ; Hughes, TJR; Landis, CM; Anvari, A.; Lee, IJ, A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput Methods Appl Mech Eng, 312, 130-166 (2016) · Zbl 1439.74343
[8] Miehe, C.; Teichtmeister, S.; Aldakheel, F., Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization, Philos Trans A Math Phys Eng Sci, 374, 20150170 (2016) · Zbl 1353.74065
[9] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput Mech, 55, 1017-1040 (2015) · Zbl 1329.74018
[10] Alessi, R.; Marigo, J-J; Maurini, C.; Vidoli, S., Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: one-dimensional examples, Int J Mech Sci (2017)
[11] Fang, J.; Wu, C.; Li, J.; Liu, Q.; Wu, C.; Sun, G., International Journal of Mechanical Sciences Phase field fracture in elasto-plastic solids : variational formulation for multi-surface plasticity and effects of plastic yield surfaces and hardening, Int J Mech Sci, 156, 382-396 (2019)
[12] Azinpour E, de Sa JC, dos Santos AD (2020) Micromechanically-motivated phase field approach to ductile fracture. doi:10.1177/1056789520948933
[13] Yin, B.; Kaliske, M., A ductile phase-field model based on degrading the fracture toughness: theory and implementation at small strain, Comput Methods Appl Mech Eng, 366, 113068 (2020) · Zbl 1442.74024
[14] Verhoosel, CV; de Borst, R., A phase-field model for cohesive fracture, Int J Numer Methods Eng, 96, 43-62 (2013) · Zbl 1352.74029
[15] May, S.; Vignollet, J.; De Borst, R., A numerical assessment of phase-field models for brittle and cohesive fracture: Γ-Convergence and stress oscillations, Eur J Mech A/Solids, 52, 72-84 (2015) · Zbl 1406.74599
[16] Miehe, C.; Kienle, D.; Aldakheel, F.; Teichtmeister, S., Phase field modeling of fracture in porous plasticity: a variational gradient-extended Eulerian framework for the macroscopic analysis of ductile failure, Comput Methods Appl Mech Eng, 312, 3-50 (2016) · Zbl 1439.74112
[17] Duran JAR, da Costa DJR, Ribeiro Junior LCDA (2018) Numerical stress-life curves for the aisi 4340 steel using two sets of materials properties and different bi-axial stress ratios. Lat Am J Solids Struct. doi:10.1590/1679-78254308
[18] Kuhn, C.; Noll, T.; Müller, R., On phase field modeling of ductile fracture, GAMM-Mitteilungen, 39, 35-54 (2016) · Zbl 1397.74027
[19] Alessi, R., A brief review on computational modeling of rupture in soft biological tissues, Adv Comput Plast (2018) · Zbl 1408.74002
[20] Msekh, MA; Sargado, JM; Jamshidian, M.; Areias, PM; Rabczuk, T., Abaqus implementation of phase-field model for brittle fracture, Comput Mater Sci, 96, 472-484 (2015)
[21] Gerasimov, T.; De Lorenzis, L., A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput Methods Appl Mech Eng, 312, 276-303 (2016) · Zbl 1439.74349
[22] Wick, T., An error-oriented newton/inexact augmented Lagrangian approach for fully monolithic phase-field fracture propagation, SIAM J Sci Comput, 39, B589-617 (2017) · Zbl 1403.74131
[23] Wick, T., Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation, Comput Methods Appl Mech Eng, 325, 577-611 (2017) · Zbl 1439.74375
[24] Wu, JY; Huang, Y.; Nguyen, VP, On the BFGS monolithic algorithm for the unified phase field damage theory, Comput Methods Appl Mech Eng (2020) · Zbl 1441.74196
[25] Wu, JY, A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J Mech Phys Solids, 103, 72-99 (2017)
[26] Kristensen, PK; Martínez-Pañeda, E., Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme, Theor Appl Fract Mech (2020)
[27] Kopaničáková, A.; Krause, R., A recursive multilevel trust region method with application to fully monolithic phase-field models of brittle fracture, Comput Methods Appl Mech Eng (2020) · Zbl 1441.74208
[28] Zhang, P.; Hu, X.; Wang, X.; Yao, W., An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus, Eng Fract Mech, 204, 268-287 (2018)
[29] Zhou, S.; Rabczuk, T.; Zhuang, X., Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies, Adv Eng Softw, 122, 31-49 (2018)
[30] Seleš, K.; Lesičar, T.; Tonković, Z.; Sorić, J., A residual control staggered solution scheme for the phase-field modeling of brittle fracture, Eng Fract Mech, 205, 370-386 (2019)
[31] Wu, JY; Huang, Y., Comprehensive implementations of phase-field damage models in Abaqus, Theor Appl Fract Mech, 106, 102440 (2020)
[32] Fang, J.; Wu, C.; Rabczuk, T.; Wu, C.; Ma, C.; Sun, G., Phase field fracture in elasto-plastic solids: Abaqus implementation and case studies, Theor Appl Fract Mech (2019)
[33] Huang, C.; Gao, X., Development of a phase fi eld method for modeling brittle and ductile fracture, Comput Mater Sci, 169, 109089 (2019)
[34] Molnár, G.; Gravouil, A.; Seghir, R.; Réthoré, J., An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation, Comput Methods Appl Mech Eng (2020) · Zbl 1442.74211
[35] Badnava, H.; Etemadi, E.; Msekh, M., A phase field model for rate-dependent ductile fracture, Metals (Basel), 7, 180 (2017)
[36] Ambati, M.; Kruse, R.; De Lorenzis, L., A phase-field model for ductile fracture at finite strains and its experimental verification, Comput Mech, 57, 149-167 (2016) · Zbl 1381.74181
[37] Ambrosio, L.; Tortorelli, VM, Approximation of functional depending on jumps by elliptic functional via t-convergence, Commun Pure Appl Math, 43, 999-1036 (1990) · Zbl 0722.49020
[38] Pham, K.; Amor, H.; Marigo, J-J; Maurini, C., Gradient damage models and their use to approximate brittle fracture, Int J Damage Mech, 20, 618-652 (2011)
[39] Amor, H.; Marigo, J-J; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J Mech Phys Solids, 57, 1209-1229 (2009) · Zbl 1426.74257
[40] Mediavilla, J.; Peerlings, RHJ; Geers, MGD, A robust and consistent remeshing-transfer operator for ductile fracture simulations, Comput Struct, 84, 604-623 (2006)
[41] Aldakheel, F.; Wriggers, P.; Miehe, C., A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling, Comput Mech (2017) · Zbl 1459.74024
[42] Seupel, A.; Hütter, G.; Kuna, M., An efficient FE-implementation of implicit gradient-enhanced damage models to simulate ductile failure, Eng Fract Mech, 199, 41-60 (2018)
[43] Mediavilla, J.; Peerlings, RHJ; Geers, MGD, Discrete crack modelling of ductile fracture driven by non-local softening plasticity, Int J Numer Methods Eng, 66, 661-688 (2006) · Zbl 1110.74839
[44] Azinpour, E.; Darabi, R.; Cesar de Sa, J.; Santos, A.; Hodek, J.; Dzugan, J., Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach, Finite Elem Anal Des, 177, 103417 (2020)
[45] Cruz, DJ; Shamchi, SP; Santos, AD; Amaral, RL; Tavares, PJ; Moreira, PMGP, Development of a mini-tensile approach for sheet metal testing using digital image correlation, Procedia Struct Integr, 25, 316-323 (2020)
[46] Ricardo R, Amaral L (2020) Development of accurate numerical methodologies applied to the stamping of advanced high strength steels and experimental validation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.