×

An acousto-electric inverse source problem. (English) Zbl 1478.35241

MSC:

35R30 Inverse problems for PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] R. Albanese and P. Monk, The inverse source problem for Maxwell’s equations, Inverse Problems, 22 (2006), pp. 1023-1035. · Zbl 1099.35161
[2] H. Ammari, G. Bao, and J. L. Flemming, An inverse source problem for Maxwell’s equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), pp. 1369-1382, https://doi.org/10.1137/S0036139900373927. · Zbl 1003.35123
[3] H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), pp. 1557-1573, https://doi.org/10.1137/070686408. · Zbl 1156.35101
[4] G. Bal, F. J. Chung, and J. C. Schotland, Ultrasound modulated bioluminescence tomography and controllability of the radiative transport equation, SIAM J. Math. Anal., 48 (2016), pp. 1332-1347, https://doi.org/10.1137/15M1026262. · Zbl 1335.35291
[5] G. Bal, C. Guo, and F. Monard, Imaging of anisotropic conductivities from current densities in two dimensions, SIAM J. Imaging Sci., 7 (2014), pp. 2538-2557, https://doi.org/10.1137/140961754. · Zbl 1361.94005
[6] G. Bal and J. Schotland, Inverse scattering and acousto-optic tomography, Phys. Rev. Lett., 104 (2010), 043902.
[7] G. Bal and J. Schotland, Ultrasound-modulated bioluminescence tomography [Rapid Communication], Phys. Rev. E, 89 (2014), 031201. · Zbl 1335.35291
[8] G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics, Inverse Problems, 26 (2010), 085010. · Zbl 1197.35311
[9] G. H. Baltuch and A. Cukiert, Operative Techniques in Epilepsy Surgery, Thieme Medical Publishers, 2020.
[10] N. Bleistein and J. Cohen, Nonuniqueness in the inverse source problem in acoustics and electromagnetics, J. Math. Phys., 18 (1977), pp. 194-201. · Zbl 0379.76076
[11] R. H. Byrd, M. E. Hribar, and J. Nocedal, An interior point algorithm for large-scale nonlinear programming, SIAM J. Optim., 9 (1999), pp. 877-900, https://doi.org/10.1137/S1052623497325107. · Zbl 0957.65057
[12] Y. Capdeboscq, J. Fehrenbach, F. de Gournay, and O. Kavian, Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements, SIAM J. Imaging Sci., 2 (2009), pp. 1003-1030, https://doi.org/10.1137/080723521. · Zbl 1180.35549
[13] F. Chung, J. Hoskins, and J. Schotland, Coherent acousto-optic tomography with diffuse light, Opt. Lett., 45 (2020), pp. 1623-1626.
[14] F. Chung, J. Hoskins, and J. Schotland, Radiative transport model for coherent acousto-optic tomography, Inverse Problems, 36 (2020), 064004. · Zbl 1442.65453
[15] F. J. Chung and J. C. Schotland, Inverse transport and acousto-optic imaging, SIAM J. Math. Anal., 49 (2017), pp. 4704-4721, https://doi.org/10.1137/16M1104767. · Zbl 1432.35247
[16] F. J. Chung, T. Yang, and Y. Yang, Ultrasound modulated bioluminescence tomography with a single optical measurement, Inverse Problems, 37 (2021), 015004. · Zbl 1458.35420
[17] J. X. Cohen, Analyzing Neural Time Series Data, MIT Press, 2014.
[18] G. Dassios, A. Fokas, and F. Kariotou, On the non-uniqueness of the inverse MEG problem, Inverse Problems, 21 (2005), pp. L1-L5. · Zbl 1070.35121
[19] A. Devaney and E. Wolf, Radiating and nonradiating classical current distributions and fields they generate, Phys. Rev. D, 8 (1973), pp. 1044-1047.
[20] A. S. Fokas, I. M. Gelfand, and Y. Kurylev, Inversion method for magnetoencephalography, Inverse Problems, 12 (1996), pp. L9-L11. · Zbl 0844.92005
[21] A. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Appl. Math., 69 (2008), pp. 565-576, https://doi.org/10.1137/080715123. · Zbl 1159.92027
[22] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015. · Zbl 0361.35003
[23] R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri, M. Zervakis, P. Xanthopoulos, V. Sakkalis, and B. Vanrumste, Review on solving the inverse problem in EEG source analysis, J. Neuroengrg. Rehab., 5 (2008), 25.
[24] M. H. Gutknecht, Variants of BiCGStab for matrices with complex spectrum, SIAM J. Sci. Comput., 14 (1993), pp. 1020-1033, https://doi.org/10.1137/0914062. · Zbl 0837.65031
[25] M. Kempe, M. Larionov, D. Zaslavsky, and A. Genack, Acousto-optic tomography with multiply scattered light, J. Opt. Soc. Amer. A, 14 (1997), pp. 1151-1158.
[26] H. Komiya, Elementary proof for Sion’s minimax theorem, Kodai Math. J., 11 (1988), pp. 5-7. · Zbl 0646.49004
[27] P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography, Inverse Problems, 27 (2011), 055013. · Zbl 1217.35211
[28] P. Kuchment and D. Steinhauer, Stabilizing inverse problems by internal data, Inverse Problems, 28 (2012), 084007. · Zbl 1252.92037
[29] B. Lavandier, J. Jossinet, and D. Cathignol, Experimental measurement of the acousto-electric interaction signal in saline solution, Ultrasonics, 38 (2000), pp. 929-936.
[30] W. Li, Y. Yang, and Y. Zhong, A hybrid inverse problem in the fluorescence ultrasound modulated optical tomography in the diffusive regime, SIAM J. Appl. Math., 79 (2019), pp. 356-376, https://doi.org/10.1137/18M117889X. · Zbl 1410.35288
[31] W. Li, Y. Yang, and Y. Zhong, Inverse transport problem in fluorescence ultrasound modulated optical tomography with angularly averaged measurements, Inverse Problems, 36 (2020), 025011. · Zbl 1466.35370
[32] A. Nachman, A. Tamasan, and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), 2551. · Zbl 1126.35102
[33] A. Nachman, A. Tamasan, and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25 (2009), 035014. · Zbl 1173.35736
[34] A. Nemirovski, Prox-method with rate of convergence \(O(1/t)\) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems, SIAM J. Optim., 15 (2004), pp. 229-251, https://doi.org/10.1137/S1052623403425629. · Zbl 1106.90059
[35] R. Parmenter, The acousto-electric effect, Phys. Rev., 89 (1953), pp. 990-998. · Zbl 0050.23706
[36] P. H. Schimpf, C. Ramon, and J. Haueisen, Dipole models for the EEG and MEG, IEEE Trans. Biomed. Engrg., 49 (2002), pp. 409-418.
[37] J. Schotland, Acousto-optic imaging of random media, Prog. Opt., 65 (2020), pp. 347-380.
[38] S. Shorvon, R. Guerrini, M. Cook, and S. D. Lhatoo, Oxford Textbook of Epilepsy and Epileptic Seizures, Oxford University Press, 2013.
[39] F. Triki, Uniqueness and stability for the inverse medium problem with internal data, Inverse Problems, 26 (2010), 095014. · Zbl 1200.35333
[40] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, An interior algorithm for nonlinear optimization that combines line search and trust region steps, Math. Program., 107 (2006), pp. 391-408. · Zbl 1134.90053
[41] Y. Zhao, G. Hu, P. Li, and X. Liu, Inverse source problems in electrodynamics, Inverse Probl. Imaging, 12 (2018), pp. 1411-1428. · Zbl 1403.35328
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.