×

Surface-localized transmission eigenstates, super-resolution imaging, and pseudo surface plasmon modes. (English) Zbl 1478.35159


MSC:

35P25 Scattering theory for PDEs
35J25 Boundary value problems for second-order elliptic equations
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
35R30 Inverse problems for PDEs
78A40 Waves and radiation in optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965. · Zbl 0171.38503
[2] H. Ammari, Y. Chow, and J. Zou, Super-resolution in imaging high contrast targets from the perspective of scattering coefficients, J. Math. Pures Appl. (9), 111 (2018), pp. 191-226. · Zbl 1391.35408
[3] H. Ammari, G. Ciraolo, H. Kang, H. Lee, and G. W. Milton, Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208 (2013), pp. 667-692. · Zbl 1282.78004
[4] S. Balac, M. Dauge, and Z. Moitier, Asymptotics for 2D Whispering Gallery Modes in Optical Micro-disks with Radially Varying Index, preprint, https://arxiv.org/abs/2003.14315, 2020.
[5] D. J. Bergman and M. I. Stockman, Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems, Phys. Rev. Lett., 90 (2003), 027402.
[6] E. Bl\aasten, Nonradiating sources and transmission eigenfunctions vanish at corners and edges, SIAM J. Math. Anal., 50 (2018), pp. 6255-6270, https://doi.org/10.1137/18M1182048. · Zbl 1409.35164
[7] E. Bl\aasten, X. Li, H. Liu, and Y. Wang, On vanishing and localizing of transmission eigenfunctions near singular points: A numerical study, Inverse Problems, 33 (2017), 105001.
[8] E. Bl\aasten and Y.-H. Lin, Radiating and non-radiating sources in elasticity, Inverse Problems, 35 (2019), 015005.
[9] E. Bl\aasten and H. Liu, On corners scattering stably and stable shape determination by a single far-field pattern, Indiana Univ. Math. J., 70 (2021), pp. 907-947.
[10] E. Bl\aasten and H. Liu, On vanishing near corners of transmission eigenfunctions, J. Funct. Anal., 273 (2017), pp. 3616-3632; addendum available from https://arxiv.org/abs/1710.08089. · Zbl 1387.35437
[11] E. L. K. Bl\aasten and H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions, and inverse scattering problems, SIAM J. Math. Anal., 53 (2021), pp. 3801-3837, https://doi.org/10.1137/20M1384002. · Zbl 1479.35838
[12] E. Bl\aasten and H. Liu, Recovering piecewise-constant refractive indices by a single far-field pattern, Inverse Problems, 36 (2020), 085005.
[13] E. Bl\aasten, H. Liu, and J. Xiao, On an electromagnetic problem in a corner and its applications, Anal. PDE, to appear.
[14] E. Bl\aasten, L. Päivärinta, and J. Sylvester, Corners always scatter, Comm. Math. Phys., 331 (2014), pp. 725-753. · Zbl 1298.35214
[15] F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, New York, 2014. · Zbl 1302.35001
[16] F. Cakoni, D. Colton, and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, SIAM, Philadelphia, 2016. · Zbl 1366.35001
[17] F. Cakoni, D. Colton, and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 379-383. · Zbl 1189.35204
[18] F. Cakoni and J. Xiao, On corner scattering for operators of divergence form and applications to inverse scattering, Comm. Partial Differential Equations, 46 (2021), pp. 413-441. · Zbl 1469.35164
[19] X. Cao, H. Diao, and H. Liu, Determining a piecewise conductive medium body by a single far-field measurement, CSIAM Trans. Appl. Math., 1 (2020), pp. 740-765.
[20] M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min A terahertz metamaterial with unnaturally high refractive index, Nature, 470 (2011), pp. 369-373.
[21] D. Colton, A. Kirsch, and P. Monk, The linear sampling method in inverse scattering theory, in Surveys on Solution Methods for Inverse Problems, Springer, Vienna, 2000, pp. 107-118. · Zbl 0968.35132
[22] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th. ed., Springer, New York, 2019. · Zbl 1425.35001
[23] D. Colton, P. Monk, and J. Sun, Analytical and computational methods for transmission eigenvalues, Inverse Problems, 26 (2010), 045011. · Zbl 1192.78024
[24] H. Diao, X. Cao, and H. Liu, On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications, Comm. Partial Differential Equations, 46 (2021), pp. 630-679, https://doi.org/10.1080/03605302.2020.1857397. · Zbl 1475.35328
[25] A. Elgart, G. M. Graf, and J. H. Shenker, Equality of the bulk and the edge Hall conductances in a mobility gap, Comm. Math. Phys., 259 (2005), pp. 185-221. · Zbl 1086.81081
[26] M. R. Foreman, J. D. Swaim, and F. Vollmer, Whispering gallery mode sensors, Adv. Opt. Photonics, 7 (2015), pp. 168-240.
[27] D. R. Fredkin and I. D. Mayergoyz, Resonant behavior of dielectric objects (electrostatic resonances), Phys. Rev. Lett., 91 (2003), 253902.
[28] R. Griesmaier, Multi-frequency orthogonality sampling for inverse obstacle scattering problems, Inverse Problems, 27 (2011), 085005. · Zbl 1222.78025
[29] F. D. M. Haldane and S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett., 100 (2008), 013904.
[30] B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B, 25 (1982), pp. 2185-2190.
[31] Y. Hatsugai, The Chern number and edge states in the integer quantum hall effect, Phys. Rev. Lett., 71 (1993), pp. 3697-3700. · Zbl 0972.81712
[32] K. Ito, B. Jin, and J. Zou, A direct sampling method for inverse electromagnetic medium scattering, Inverse Problems, 29 (2013), 095018. · Zbl 1290.78008
[33] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Photonic topological insulators, Nat. Mater., 12 (2013), pp. 233-239.
[34] A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), pp. 213-225. · Zbl 0652.35104
[35] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Ser. Math. Appl. 36, Oxford University Press, Oxford, UK, 2008. · Zbl 1222.35001
[36] V. V. Klimov, Nanoplasmonics, CRC Press, Boca Raton, FL, 2014.
[37] B. G. Korenev, Bessel Functions and Their Applications, Chapman & Hall/CRC, Boca Raton, FL, 2002. · Zbl 1065.33001
[38] H. Li and H. Liu, On anomalous localized resonance and plasmonic cloaking beyond the quasi-static limit, Proc. Roy. Soc. A., 474 (2018), 20180165. · Zbl 1407.35228
[39] H. Li and H. Liu, On anomalous localized resonance for the elastostatic system, SIAM J. Math. Anal., 48 (2016), pp. 3322-3344, https://doi.org/10.1137/16M1059023. · Zbl 1350.35025
[40] J. Li, H. Liu, and Q. Wang, Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), pp. 547-561. · Zbl 1306.78007
[41] S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics, Cambridge University Press, Cambridge, UK, 1995. · Zbl 1215.78003
[42] H. Liu, On local and global structures of transmission eigenfunctions and beyond, J. Inverse Ill-Posed Probl., (2020), https://doi.org/10.1515/jiip-2020-0099.
[43] H. Liu, X. Liu, X. Wang, and Y. Wang, On a novel inverse scattering scheme using resonant modes with enhanced imaging resolution, Inverse Problems, 35 (2019), 125012. · Zbl 1430.35068
[44] H. Liu and J. Zou, Zeros of the Bessel and spherical Bessel functions and their applications for uniqueness in inverse acoustic obstacle scattering, IMA J. Appl. Math., 72 (2007), pp. 817-831. · Zbl 1138.35072
[45] X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency, Inverse Problems, 33 (2017), 085011. · Zbl 1382.65367
[46] R. Luc, Spectral analysis on interior transmission eigenvalues, Inverse Problems, 29 (2013), 104001.
[47] G. W. Milton and N.-A. P. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. Roy. Soc. A., 462 (2006), pp. 3027-3059. · Zbl 1149.00310
[48] F. Ouyang and M. Isaacson, Surface plasmon excitation of objects with arbitrary shape and dielectric constant, Philos. Mag., 60 (1989), pp. 481-492.
[49] L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), pp. 738-753, https://doi.org/10.1137/070697525. · Zbl 1159.81411
[50] C. K. Qu and R. Wong, “Best possible” upper and lower bounds for the zeros of the Bessel function \(J_{\nu}(x)\), Trans. Amer. Math. Soc., 351 (2008), pp. 2833-2859. · Zbl 0930.41020
[51] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic Floquet topological insulators, Nature, 496 (2013), pp. 196-200.
[52] J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), pp. 341-354, https://doi.org/10.1137/110836420. · Zbl 1238.81172
[53] D. J. Thouless, M. Kohmoto, M. P. Nightgale, and M. Den Nijs, Quantized hall conductance in a two dimensional periodic potential, Phys. Rev. Lett., 49 (1982), pp. 405-408.
[54] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, Reflection-free one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett., 100 (2008), 013905.
[55] N. Weck, Approximation by Herglotz wave functions, Math. Methods Appl. Sci., 27 (2004), pp. 155-162. · Zbl 1099.35007
[56] S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43 (2014), pp. 3426-3452.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.