Quotient-space boundary element methods for scattering at complex screens. (English) Zbl 1479.65034

Summary: A complex screen is an arrangement of panels that may not be even locally orientable because of junction lines. A comprehensive trace space framework for first-kind variational boundary integral equations on complex screens has been established in [X. Claeys and R. Hiptmair, Integral Equations Oper. Theory 77, No. 2, 167–197 (2013; Zbl 1292.45001)] for the Helmholtz equation, and in [X. Claeys and R. Hiptmair, Integral Equations Oper. Theory 84, No. 1, 33–68 (2016; Zbl 1337.78008)] for Maxwell’s equations in frequency domain. The gist is a quotient space perspective that allows to make sense of jumps of traces as factor spaces of multi-trace spaces modulo single-trace spaces without relying on orientation. This paves the way for formulating first-kind boundary integral equations in weak form posed on energy trace spaces. In this article we extend that idea to the Galerkin boundary element (BE) discretization of first-kind boundary integral equations. Instead of trying to approximate jumps directly, the new quotient space boundary element method employs a Galerkin BE approach in multi-trace boundary element spaces. This spawns discrete boundary integral equations with large null spaces comprised of single-trace functions. Yet, since the right-hand-sides of the linear systems of equations are consistent, Krylov subspace iterative solvers like GMRES are not affected by the presence of a kernel and still converge to a solution. This is strikingly confirmed by numerical tests.


65N38 Boundary element methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78M15 Boundary element methods applied to problems in optics and electromagnetic theory
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
76M15 Boundary element methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
78A45 Diffraction, scattering
76Q05 Hydro- and aero-acoustics
35R09 Integro-partial differential equations
45K05 Integro-partial differential equations
45A05 Linear integral equations
65R20 Numerical methods for integral equations
65F10 Iterative numerical methods for linear systems


Full Text: DOI


[1] Babuška, I.; Guo, BQ; Stephan, EP, On the exponential convergence of the \(h-p\) version for boundary element Galerkin methods on polygons, Math. Methods Appl. Sci., 12, 5, 413-427 (1990) · Zbl 0701.65074
[2] Bespalov, A.; Heuer, N.; Hiptmair, R., Convergence of natural \(hp\)-BEM for the electric field integral equation on polyhedral surfaces, SIAM J. Numer. Anal., 48, 4, 1518-1529 (2010) · Zbl 1223.65083
[3] Buffa, A., Remarks on the discretization of some non-positive operators with application to heterogeneous Maxwell problems, SIAM J. Numer. Anal., 43, 1, 1-18 (2005) · Zbl 1128.78010
[4] Buffa, A.; Christiansen, SH, The electric field integral equation on Lipschitz screens: definitions and numerical approximation, Numer. Math., 94, 2, 229-267 (2003) · Zbl 1027.65188
[5] Buffa, A., Hiptmair, R.: Galerkin boundary element methods for electromagnetic scattering. In: Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol. 31, pp. 83-124. Springer, Berlin (2003). doi:10.1007/978-3-642-55483-4_3 · Zbl 1055.78013
[6] Carr, M.; Topsakal, E.; Volakis, J., A procedure for modeling material junctions in 3-d surface integral equation approaches, IEEE Trans. Antennas Propag., 52, 5, 1374-1378 (2004)
[7] Choi, S.C.T.: Iterative methods for singular linear equations and least-squares problems. ProQuest LLC, Ann Arbor, MI (2007). Thesis (Ph.D.), Stanford University
[8] Claeys, X.; Hiptmair, R., Integral equations on multi-screens, Integr. Equ. Oper. Theory, 77, 2, 167-197 (2013) · Zbl 1292.45001
[9] Claeys, X.; Hiptmair, R., Integral equations for electromagnetic scattering at multi-screens, Integr. Equ. Oper. Theory, 84, 1, 33-68 (2016) · Zbl 1337.78008
[10] Cools, K.: Mortar boundary elements for the EFIE applied to the analysis of scattering by PEC junctions. In: 2012 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 165-168 (2012). doi:10.1109/APEMC.2012.6237847
[11] Costabel, M., Dauge, M.: General edge asymptotics of solutions of second-order elliptic boundary value problems I, II. Proc. R. Soc. Edinb. Sect. A 123(1), 109-155, 157-184 (1993). doi:10.1017/S0308210500021272 · Zbl 0791.35033
[12] Costabel, M.; Dauge, M.; Duduchava, R., Asymptotics without logarithmic terms for crack problems, Commun. Partial Differ. Equ., 28, 5-6, 869-926 (2003) · Zbl 1103.35321
[13] Dauge, M., Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics (1988), Berlin: Springer, Berlin · Zbl 0668.35001
[14] Ervin, VJ; Stephan, EP, A boundary element Galerkin method for a hypersingular integral equation on open surfaces, Math. Methods Appl. Sci., 13, 4, 281-289 (1990) · Zbl 0717.65092
[15] Ervin, VJ; Stephan, EP; El-Seoud, SA, An improved boundary element method for the charge density of a thin electrified plate in \({\mathbb{R}}^3\), Math. Methods Appl. Sci., 13, 4, 291-303 (1990) · Zbl 0717.65093
[16] Gimperlein, H.; Meyer, F.; Özdemir, C.; Stark, D.; Stephan, EP, Boundary elements with mesh refinements for the wave equation, Numer. Math., 139, 4, 867-912 (2018) · Zbl 1407.65172
[17] Girault, V.; Raviart, P., Finite Element Methods for Navier-Stokes Equations (1986), Berlin: Springer, Berlin · Zbl 0585.65077
[18] Gómez-Sousa, H., nos López, O.R., Martínez-Lorenzo, J.: Junction modeling for piecewise non-homogeneous geometries involving arbitrary materials. In: 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 2196-2197 (2014). doi:10.1109/APS.2014.6905425
[19] Gwinner, J.; Stephan, EP, Advanced Boundary Element Methods. Springer Series in Computational Mathematics (2018), Cham: Springer, Cham · Zbl 1429.65001
[20] Hanke, M., Conjugate Gradient Type Methods for Ill-Posed Problems. Pitman Research Notes in Mathematics Series (1995), Harlow: Longman Scientific & Technical, Harlow · Zbl 0830.65043
[21] Hiptmair, R., Kielhorn, L.: Betl: a generic boundary element template library. Technical Report 2012-36, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2012). https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2012/2012-36.pdf
[22] Hochbruck, M.; Lubich, C., Error analysis of Krylov methods in a nutshell, SIAM J. Sci. Comput., 19, 695-701 (1998) · Zbl 0914.65024
[23] Maz’ya, V., Rossmann, J.: Elliptic equations in polyhedral domains. In: Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence, RI (2010). doi:10.1090/surv/162
[24] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0948.35001
[25] Nazarov, S.A., Plamenevsky, B.A.: Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1994). doi:10.1515/9783110848915.525 · Zbl 0806.35001
[26] von Petersdorff, T.: Randwertprobleme der elastizitätstheorie für polyeder - singularitäten und approximation mit randelementmethoden. Ph.D. thesis, Tu Darmstadt (1989) · Zbl 0709.73009
[27] von Petersdorff, T.; Stephan, EP, Decompositions in edge and corner singularities for the solution of the Dirichlet problem of the Laplacian in a polyhedron, Math. Nachr., 149, 71-103 (1990) · Zbl 0780.35026
[28] von Petersdorff, T.; Stephan, EP, Regularity of mixed boundary value problems in \({ R}^3\) and boundary element methods on graded meshes, Math. Methods Appl. Sci., 12, 3, 229-249 (1990) · Zbl 0722.35017
[29] von Petersdorff, T.; Stephan, EP, Singularities of the solution of the Laplacian in domains with circular edges, Appl. Anal., 45, 1-4, 281-294 (1992) · Zbl 0758.35002
[30] Putnam, J.; Medgyesi-Mitschang, L., Combined field integral equation formulation for inhomogeneous two and three-dimensional bodies: the junction problem, IEEE Trans. Antennas Propag., 39, 5, 667-672 (1991)
[31] Sauter, S.A., Schwab, C.: Boundary element methods, Springer Series in Computational Mathematics, vol. 39. Springer, Berlin (2011). doi:10.1007/978-3-540-68093-2 · Zbl 1215.65183
[32] Schwab, C.; Suri, M., The optimal \(p\)-version approximation of singularities on polyhedra in the boundary element method, SIAM J. Numer. Anal., 33, 2, 729-759 (1996) · Zbl 0854.65108
[33] Stephan, E., Boundary integral equations for screen problems in \({\mathbb{R}}^3\), Integr. Equ. Oper. Theory, 10, 2, 236-257 (1987) · Zbl 0653.35016
[34] Urzúa-Torres, C.: Operator preconditioning for galerking boundary element methods on screens. Eth dissertation, ETH Zurich, Switzerland (2018)
[35] Ylä-Oijala, P.; Taskinen, M.; Sarvas, J., Surface integral equation method for general composite metallic and dielectric structures with junctions, PIER, 52, 81-108 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.