×

On the almost sure convergence of a stochastic process in a class of nonlinear multi-population behavioral models for HIV/AIDS with delayed ART treatment. (English) Zbl 1474.92064

Summary: The success in reducing global HIV prevalence rates is attributed to control measures like information and education campaigns (IECs), antiretroviral therapy (ART), and national, multinational and multilateral support providing official developmental assistance (ODAs) to combat HIV. A class of stochastic nonlinear multi-population behavioral HIV/AIDS models is studied, where behavioral change is inspired by the IECs safe sex education. Exponential almost sure stability analysis of the model is conducted, and the results are employed to determine the impacts of the supply of ODAs, IECs, early treatment and poverty rates on the epidemic. The behavioral change and the noise induced basic reproduction numbers are obtained.

MSC:

92C60 Medical epidemiology
92D30 Epidemiology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] CDC
[2] The global fund
[3] Healio-infectious disease news
[4] How can you tell if you have HIV?
[5] ILOAIDS
[6] Pre-exposure prophylaxis
[7] PrEp
[8] Presidendent’s emergency plan for aids relief
[9] WHO
[10] Allen, E. J., Environmental variability and mean-reverting processes, Discret. Contin. Dyn. Syst, 21, 7, 2073-2089 (2016) · Zbl 1347.60066
[11] Allen, E. J.; Allen, L. J. S.; Arciniega, A.; Greenwood, P. E., Construction of equivalent stochastic differential equation models, Stoch. Anal. Appl, 26, 274-297 (2008) · Zbl 1137.60026
[12] Del Valle, S.; Morales Evangelista, A.; Velasco, M. C.; Kribs-Zaleta, C. M.; Hsu Schmitz, S.-F., Effects of education, vaccination and treatment on HIV transmission in homosexuals with genetic heterogeneity, Math. Biosci, 187, 2, 111-133 (2004) · Zbl 1047.92042 · doi:10.1016/j.mbs.2003.11.004
[13] Fobil, J. N.; Soyiri, I. N., An assessment of government policy response to HIV/AIDS in Ghana, SAHARA J, 3, 2, 457-465 (2006) · doi:10.1080/17290376.2006.9724872
[14] Gillespie, S.; Kadiyala, S.; Greener, R., Is poverty or wealth driving HIV transmission?, Glob Public Health, 21, 7, S5-S16 (2007)
[15] Green, E. C.; Halperin, D. T.; Nantulya, V.; Hogle, J. A., Uganda’s HIV prevention success: The role of sexual behavior change and the national response, AIDS Behav, 10, 4, 335-346 (2006) · doi:10.1007/s10461-006-9073-y
[16] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev, 42, 4, 599-653 (2000) · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[17] Huo, H.-F.; Chen, R.; Wang, X.-Y., Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Modell, 40, 13-14, 6550-6559 (2016) · Zbl 1465.92119 · doi:10.1016/j.apm.2016.01.054
[18] Joshi, H.; Lenhart, S.; Albright, K.; Gipson, K., Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math. Biosci. Eng, 5, 4, 757-770 (2008) · Zbl 1154.92037 · doi:10.3934/mbe.2008.5.757
[19] Korobeinikov, A.; Maini, P. K., Non-linear incidence and stability of infectious disease models, Math. Med. Biol, 22, 2, 113-128 (2005) · Zbl 1076.92048 · doi:10.1093/imammb/dqi001
[20] Kumar, A.; Srivastava, P. K.; Takeuchi, Y., Modeling the role of information and limited optimal treatment on disease prevalence, J. Theor. Biol, 414, 103-119 (2017) · Zbl 1369.93567 · doi:10.1016/j.jtbi.2016.11.016
[21] Lawn, S. D.; Török, M. E.; Wood, R., Optimum time to start antiretroviral therapy during HIV-associated opportunistic infections, Curr. Opin. Infect. Dis, 24, 1, 34-42 (2011) · doi:10.1097/QCO.0b013e3283420f76
[22] Liu, H.; Zhang, J.-F., Dynamics of two time delays differential equation model to HIV latent infection, Physica A, 514, 384-395 (2019) · Zbl 07562382 · doi:10.1016/j.physa.2018.09.087
[23] Ma, S. H.; Huo, H. F., Global dynamics for a multi-group alcoholism model with public health education and alcoholism age, Math. Biosci. Eng, 16, 3, 1683-1708 (2019) · Zbl 1497.92280 · doi:10.3934/mbe.2019080
[24] Mao, X., Stochastic Differential Equations and Applications (2007), Amsterdam: Elsevier, Amsterdam · Zbl 1138.60005
[25] Mukandavire, Z.; Garira, W.; Tchuenche, J. M., Modelling effects of public health educational campaigns on HIV/AIDS transmission dynamics, Appl. Math. Modell, 33, 4, 2084-2095 (2009) · Zbl 1205.34092 · doi:10.1016/j.apm.2008.05.017
[26] Munoz-Laboy, M.; Severson, N.; Bannan, S., Occupations, social vulnerability and HIV/STI risk: The case of bisexual Latino men in the New York City metropolitan area, Glob Public Health, 9, 10, 1167-1183 (2014)
[27] Nunnenkamp, P.; Öhler, H., Throwing foreign aid at HIV/AIDS in developing countries: Missing the target?, World Dev, 39, 10, 1704-1723 (2011) · doi:10.1016/j.worlddev.2011.04.033
[28] Okware, S.; Kinsman, J.; Onyango, S.; Opio, A.; Kaggwa, P., Revisiting the ABC strategy: HIV prevention in Uganda in the era of antiretroviral therapy, Postgrad Med. J, 81, 625-628 (2005)
[29] Singh, S.; Darroch, J. E.; Bankole, A., A, B and C in Uganda: The roles of abstinence, monogamy and condom use in HIV decline, Reprod. Health Matters, 12, 23, 129-131 (2004) · doi:10.1016/S0968-8080(04)23118-4
[30] Walensky, R. P.; Borre, E. D.; Bekker, L.-G.; Hyle, E. P.; Gonsalves, G. S.; Wood, R.; Eholié, S. P.; Weinstein, M. C.; Anglaret, X.; Freedberg, K. A., Do less harm: Evaluating HIV programmatic alternatives in response to cutbacks in foreign aid, Ann. Intern. Med, 167, 9, 618-629 (2017) · doi:10.7326/M17-1358
[31] Wanduku, D., Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations, Appl. Math. Comput, 294, 49-76 (2017) · Zbl 1411.34103 · doi:10.1016/j.amc.2016.09.001
[32] Wanduku, D., Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a non-random environment, Int. J. Biomath, 11, 6, 1850085 (2018) · Zbl 1396.92086 · doi:10.1142/S1793524518500857
[33] Wanduku, D., The stochastic extinction and stability conditions for nonlinear malaria epidemics, Math. Biosci. Eng, 16, 5, 3771-3806 (2019) · Zbl 1497.92307 · doi:10.3934/mbe.2019187
[34] Wanduku, D., A nonlinear multi-population behavioral model to assess the roles of education campaigns, random supply of AIDS, and delayed art treatment in HIV/AIDS epidemics, Math. Biosci. Eng, 17, 6, 6791-6837 (2020) · Zbl 1471.92208 · doi:10.3934/mbe.2020354
[35] Wanduku, D., Applied Mathematical Analysis: Theory, Methods, and Applications, Modeling highly random dynamical infectious systems, 509-578 (2020), Basel: Springer, Basel · Zbl 1423.37070
[36] Wanduku, D.; Oluyede, B., Some asymptotic properties of seirs models with nonlinear incidence and random delays, NAMC, 25, 3, 461-481 (2020) · Zbl 1444.92127 · doi:10.15388/namc.2020.25.16660
[37] WHO. (2015). WHO expands recommendation on oral pre-exposure prophylaxis of HIV infection (Prep) policy brief. WHO reference number: WHO/HIV/2015.48.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.