×

Highly efficient Shannon wavelet-based pricing of power options under the double exponential jump framework with stochastic jump intensity and volatility. (English) Zbl 1510.91186

Summary: We propose a highly efficient and accurate valuation method for exotic-style options based on the novel Shannon wavelet inverse Fourier technique (SWIFT). Specifically, we derive an efficient pricing method for power options under a more realistic double exponential jump model with stochastic volatility and jump intensity. The inclusion of such innovations may accommodate for the various stylised facts observed in the prices of financial assets, and admits a more realistic pricing framework as a result. Following the derivation of our SWIFT pricing method for power options, we perform extensive numerical experiments to analyse both the method’s accuracy and efficiency. In addition, we investigate the sensitivities in the resulting prices, as well as the inherent errors, to changes in the underlying market conditions. Our numerical results demonstrate that the SWIFT method is not only more efficient when benchmarked to its closest competitors, such as the Fourier-cosine (COS) and the widely-acclaimed fast-Fourier transform (FFT) methods, but it is also robust across a range of different market conditions exhibiting exponential error convergence.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
91G20 Derivative securities (option pricing, hedging, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Carr, P.; Madan, D., Option valuation using the fast Fourier transform, J. Comput. Finance, 2, 4, 61-73 (1999)
[2] Chang, C.; Fuh, C.-D.; Lin, S.-K., A tale of two regimes: theory and empirical evidence for a Markov-modulated jump diffusion model of equity returns and derivative pricing implications, J. Bank. Finance, 37, 8, 3204-3217 (2013)
[3] Colldeforns-Papiol, G.; Ortiz-Gracia, L.; Oosterlee, C. W., Two-dimensional Shannon wavelet inverse fourier technique for pricing european options, Appl. Numer. Math., 117, 115-138 (2017) · Zbl 1414.91409
[4] Duffie, D.; Pan, J.; Singleton, K., Transform analysis and asset pricing for affine jump-diffusions, Econometrica, 68, 6, 1343-1376 (2000) · Zbl 1055.91524
[5] Fang, F.; Oosterlee, C. W., A novel pricing method for european options based on fourier-cosine series expansions, SIAM J. Sci. Comput., 31, 2, 826-848 (2008) · Zbl 1186.91214
[6] Fang, F.; Oosterlee, C. W., Pricing early-exercise and discrete barrier options by fourier-cosine series expansions, Numer. Math., 114, 1, 27-62 (2009) · Zbl 1185.91176
[7] Fang, F.; Oosterlee, C. W., A fourier-based valuation method for bermudan and barrier options under Heston’s model, SIAM J. Financ. Math., 2, 1, 439-463 (2011) · Zbl 1236.65163
[8] Gearhart, W. B.; Schultz, H., The function sin (x) x, Coll. Math. J., 2, 2, 90-99 (1990)
[9] Heston, S. L., A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6, 2, 327-343 (1993) · Zbl 1384.35131
[10] Heynen, R. C.; Kat, H. M., Pricing and hedging power options, Financ. Eng. Jpn. Mark., 3, 3, 253-261 (1996) · Zbl 1153.91507
[11] Huang, C.-S.; O’Hara, J. G.; Mataramvura, S., Efficient pricing of discrete arithmetic asian options under mean reversion and jumps based on Fourier-cosine expansions, J. Comput. Appl. Math., 311, 230-238 (2017) · Zbl 1354.91164
[12] Huang, J.; Zhu, W.; Ruan, X., Fast Fourier transform based power option pricing with stochastic interest rate, volatility, and jump intensity, J. Appl. Math., 2013 (2013) · Zbl 1397.91569
[13] Huang, J.; Zhu, W.; Ruan, X., Option pricing using the fast Fourier transform under the double exponential jump model with stochastic volatility and stochastic intensity, J. Comput. Appl. Math., 263, 152-159 (2014) · Zbl 1291.91232
[14] Huang, S.; Guo, X., A Fourier-cosine method for pricing discretely monitored barrier options under stochastic volatility and double exponential jump, Math. Probl. Eng., 2020 (2020) · Zbl 1459.91219
[15] Hull, J.; White, A., The pricing of options on assets with stochastic volatilities, J. Finance, 42, 2, 281-300 (1987)
[16] Hurn, A.; Lindsay, K.; McClelland, A., On the efficacy of Fourier series approximations for pricing european options, Appl. Math., 5, 17, 2786-2807 (2014)
[17] Ibrahim, S. N.; O’Hara, J. G.; Constantinou, N., Pricing power options under the Heston dynamics using the FFT, New Trends Math. Sci., 1, 1, 1-9 (2013)
[18] Ibrahim, S. N.I.; O’Hara, J. G.; Constantinou, N., Risk-neutral valuation of power barrier options, Appl. Math. Lett., 26, 6, 595-600 (2013) · Zbl 1262.91135
[19] Kirkby, J. L., Efficient option pricing by frame duality with the fast Fourier transform, SIAM J. Financ. Math., 6, 1, 713-747 (2015) · Zbl 1320.91155
[20] Kou, S. G., A jump-diffusion model for option pricing, Manage. Sci., 48, 8, 1086-1101 (2002) · Zbl 1216.91039
[21] Kou, S. G.; Wang, H., Option pricing under a double exponential jump diffusion model, Manage. Sci., 50, 9, 1178-1192 (2004)
[22] Leitao, A.; Ortiz-Gracia, L.; Wagner, E. I., Swift valuation of discretely monitored arithmetic asian options, J. Comput. Sci., 28, 120-139 (2018)
[23] Macovschi, S.; Quittard-Pinon, F., On the pricing of power and other polynomial options, J. Derivatives, 13, 4, 61-71 (2006)
[24] Maree, S. C.; Ortiz-Gracia, L.; Oosterlee, C. W., Pricing early-exercise and discrete barrier options by Shannon wavelet expansions, Numer. Math., 136, 4, 1035-1070 (2017) · Zbl 1378.91124
[25] Ortiz-Gracia, L.; Oosterlee, C. W., A highly efficient Shannon wavelet inverse Fourier technique for pricing european options, SIAM J. Sci. Comput., 38, 1, B118-B143 (2016) · Zbl 1330.91184
[26] Pillay, E.; O’Hara, J., FFT based option pricing under a mean reverting process with stochastic volatility and jumps, J. Comput. Appl. Math., 235, 12, 3378-3384 (2011) · Zbl 1213.91162
[27] Quine, B.; Abrarov, S., Application of the spectrally integrated Voigt function to line-by-line radiative transfer modelling, J. Quant. Spectrosc. Radiat. Transf., 127, 37-48 (2013)
[28] Ruijter, M. J.; Oosterlee, C. W., A Fourier cosine method for an efficient computation of solutions to BSDEs, SIAM J. Sci. Comput., 37, 2, A859-A889 (2015) · Zbl 1314.65011
[29] Santa-Clara, P.; Yan, S., Crashes, volatility, and the equity premium: lessons from s&p 500 options, Rev. Econ. Stat., 92, 2, 435-451 (2010)
[30] Tompkins, R., Power options: hedging nonlinear risks, J. Risk, 2, 29-46 (2000)
[31] Topper, J., Finite element modeling of exotic options, Operations Research Proceedings 1999, 336-341 (2000), Springer · Zbl 1052.91518
[32] Tour, G.; Thakoor, N.; Khaliq, A.; Tangman, D., COS method for option pricing under a regime-switching model with time-changed Lévy processes, Quant. Finance, 18, 4, 673-692 (2018) · Zbl 1400.91614
[33] Wong, H. Y.; Lo, Y. W., Option pricing with mean reversion and stochastic volatility, Eur. J. Oper. Res., 197, 1, 179-187 (2009) · Zbl 1157.91375
[34] Wystup, U., Structured products, FX Opt. Struct. Prod., 139-209 (2006)
[35] Zhang, B.; Oosterlee, C. W., Efficient pricing of european-style asian options under exponential Lévy processes based on Fourier cosine expansions, SIAM J. Financ. Math., 4, 1, 399-426 (2013) · Zbl 1282.65023
[36] Zhang, S.; Geng, J., Fourier-cosine method for pricing forward starting options with stochastic volatility and jumps, Commun. Stat.-Theory Methods, 46, 20, 9995-10004 (2017) · Zbl 1378.35341
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.