×

Uneven resources network promotes cooperation in the prisoner’s dilemma game. (English) Zbl 1510.91040

Summary: Scholars explored cooperative behavior on different network; however they did not consider the resource distribution and consumption on them. In our work, we propose a kind of uneven resource distribution network model, in which players can consume finite resources to survive. In our model, firstly, there are four players, and then we imitate real organism behavior, such as eating, migration, game, leaning, and reproduction. Meanwhile, during this process, finite resource also decreases with players’ consumption. After numerical simulation, we find that defectors can occupy the most resource-rich areas at first, but they cannot survive in hostile area and decrease rapidly. While cooperators always keep growing. In addition, when resources decrease substantially, cooperative behavior can be promoted. This also sprouts new insights on survival and development of cooperative behavior.

MSC:

91A22 Evolutionary games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Axelrod, R.; Hamilton, W. D., The evolution of cooperation, Science, 211, 4489, 1390-1396 (1981) · Zbl 1225.92037
[2] Weibull, J. W., Evolutionary Game theory[M] (1997), MIT press
[3] Xu, J.; Deng, Z.; Gao, B., Popularity-driven strategy updating rule promotes cooperation in the spatial prisoner’s dilemma game, Appl. Math. Comput., 353, 82-87 (2019) · Zbl 1429.91061
[4] Wang, Z.; Jusup, M.; Wang, R. W., Onymity promotes cooperation in social dilemma experiments, Sci. Adv., 3, 3, Article e1601444 pp. (2017)
[5] Deng, Z. H.; Wang, Z. R.; Wang, H. B., The evolution of cooperation in multi-games with popularity-driven fitness calculation[J], Chaos, Solitons & Fractals, 151, Article 111298 pp. (2021)
[6] Deng, X. Y.; Zhang, Q.; Deng, Y.; Wang, Z., A novel framework of classical and quantum prisoner’s dilemma games on coupled networks, Sci. Rep., 6, 23024 (2016)
[7] Gould, S. J., Darwinism and the expansion of evolutionary theory, Science, 216, 4544, 380-387 (1982)
[8] Wang, Z.; Bauch, C. T.; Bhattacharyya, S., Statistical physics of vaccination, Phys. Rep., 664, 1-113 (2016) · Zbl 1359.92111
[9] Lewontin, R. C., Evolution and the theory of games, J.Theoret. Biol., 1, 3, 382-403 (1961)
[10] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0914.90287
[11] Smith, J. M., Evolution and the Theory of Games[M] (1982), Cambridge university press · Zbl 0526.90102
[12] Gintis, H., Game Theory evolving: a Problem-Centered Introduction to Modeling Strategic Interaction (2000), Princeton University Press · Zbl 1159.91300
[13] Nowak, M. A., Evolutionary Dynamics (2006), Harvard University Press: Harvard University Press Cambridge, MA · Zbl 1098.92051
[14] Roca, C. P.; Cuesta, J. A.; Sánchez, A., Evolutionary game theory: temporal and spatial effects beyond replicator dynamics, Phys. Life Rev., 6, 4, 208-249 (2009)
[15] Deng, Z. H.; Huang, Y. J.; Gu, Z. Y., Multi-games on interdependent networks and the evolution of cooperation[J], Phys. A: Stat. Mech. App., 510, 83-90 (2018)
[16] Huang, K.; Zhang, Y.; Li, Y.; Yang, C.; Wang, Z., Effects of external forcing on evolutionary games in complex networks, Chaos Interdiscip. J. Nonlinear Sci., 28, 9, Article 093108 pp. (2018)
[17] Deng, Z. H.; Wang, Z. R.; Wang, H. B., Impact of informers on the evolution of cooperation in prisoner’s dilemma game[J], Chaos, Solitons & Fractals, 149, Article 111069 pp. (2021)
[18] Deng, Z.; Wang, S.; Gu, Z., Heterogeneous preference selection promotes cooperation in spatial prisoners’ dilemma game[J], Chaos, Solitons & Fractals, 100, 20-23 (2017) · Zbl 1375.91025
[19] Perc, M.; Jillian, J. Jordan; David, G. Rand; Wang, Z.; Boccaletti, S.; Szolnoki, A., Statiscal physics of human cooperation, Phys. Rep., 687, 1-51 (2017) · Zbl 1366.80006
[20] Perc, M., Phase transitions in models of human cooperation[J], Phys. Lett. A, 380, 36, 2803-2808 (2016)
[21] Wang, Z.; Perc, M., Aspiring to the fittest and promotion of cooperation in the prisoner’s dilemma game[J], Phys. Rev. E, 82, 2, Article 021115 pp. (2010)
[22] Szabó, G.; Toke, A. C., Evolutionary prisoner’s dilemma game on a square lattice, Phys. Rev. E, 58, 1, 69-73 (1998)
[23] Wang, Z.; Kokubo, S.; Jusup, M., Universal scaling for the dilemma strength in evolutionary games[J], Phys Life Rev, 14, 1-30 (2015)
[24] Wang, Z.; Du, W. B.; Cao, X. B., Integrating neighborhoods in the evaluation of fitness promotes cooperation in the spatial prisoner’s dilemma game[J], Phys. A: Stat. Mech. App., 390, 7, 1234-1239 (2011)
[25] Bone, J. E.; Wallace, B.; Bshary, R., Power asymmetries and punishment in a prisoner’s dilemma with variable cooperative investment[J], PLoS ONE, 11, 5, Article e0155773 pp. (2016)
[26] Wang, Z.; Jusup, M.; Wang, R. W., Onymity promotes cooperation in social dilemma experiments[J], Sci. Adv., 3, 3, Article e1601444 pp. (2017)
[27] Wang, Z.; Xia, C. Y.; Meloni, S., Impact of social punishment on cooperative behavior in complex networks[J], Sci. Rep., 3, 1, 1-7 (2013)
[28] Huang, K.; Zheng, X.; Li, Z.; Yang, Y., Understanding cooperative behavior based on the coevolution of game strategy and link weight, Sci. Rep., 5, 14783 (2015)
[29] Shi, L.; Shen, C.; Geng, Y.; Chu, C.; Meng, H.; Perc, M., Winner-weaken-loser-strengthen rule leads to optimally cooperative interdependent net- works, Nonlinear Dyn., 96, 1, 49-56 (2019) · Zbl 1437.91077
[30] Huang, K.; Zhang, Y.; Li, Y.; Yang, C.; Wang, Z., Effects of external forcing on evolutionary games in complex networks, Chaos, 28, 9, Article 093108 pp. (2018)
[31] Nowak, M. A., Five rules for the evolution of cooperation, Science, 314, 1560 (2006)
[32] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 6398, 826 (1992)
[33] Hamilton, W. D., The genetical evolution of social behavior. II, J. Theoret. Biol., 7, 1, 17-52 (1964)
[34] Nowak, M. A.; Sigmund, K., Evolution of indirect reciprocity[J], Nature, 437, 7063, 1291-1298 (2005)
[35] Wang, Z.; Szolnoki, A.; Perc, M., Rewarding evolutionary fitness with links between populations promotes cooperation[J], J. Theor. Biol., 349, 50-56 (2014) · Zbl 1412.91016
[36] Li, X. W.; Jusup, M.; Wang, Z.; Li, H. J., Punishment diminishes the benefits of network reciprocity in social dilemma experiments, Proc. Natl. Acad. Sci., 115, 1, 395-401 (2018)
[37] Smith, J. M., Group selection and kin selection, Nature, 201, 4924, 1145-1147 (1964)
[38] Deng, Z. H.; Wang, Z. R.; Wang, H. B., Impact of informers on the evolution of cooperation in prisoner’s dilemma game[J], Chaos, Solitons & Fractals, 149, Article 111069 pp. (2021)
[39] Liu, J.; Meng, H.; Wei, W., Synergy punishment promotes cooperation in spatial public good game[J], Chaos Solitons & Fractals, 109, 214-218 (2018) · Zbl 1390.91056
[40] Liu, J.; Meng, H.; Wang, W., Evolution of cooperation on independent networks: the influence of asymmetric information sharing updating mechanism[J], Appl. Math Comput., 340, 234-241 (2019) · Zbl 1429.91053
[41] Chu, C.; Mu, C.; Liu, J., Aspiration-based coevolution of node weights promotes cooperation in the spatial prisoner’s dilemma game[J], New J. Phys., 21, 6 (2019)
[42] Chu, C.; Hu, X.; Shen, C., Self-organized interdependence among populations promotes cooperation by means of coevolution[J], Chaos: An Interdiscip. J. Nonlinear Sci., 29, 1, Article 013139 pp. (2019)
[43] Chu, C.; Hu, D.; Jiang, G., Evolution of cooperation in multi-population[J], EPL (Europhysics Letters), 132, 5, 58001 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.