×

Solving nonlinear integral equations with non-separable kernel via a high-order iterative process. (English) Zbl 1497.45006

Summary: In this work we focus on location and approximation of a solution of nonlinear integral equations of Hammerstein-type when the kernel is non-separable through a high order iterative process. For this purpose, we approximate the non-separable kernel by means of a separable kernel and then, we perform a complete study about the convergence criteria for the approximated solution obtained to the solution of our first problem. Different examples have been tested in order to apply our theoretical results.

MSC:

45G10 Other nonlinear integral equations
47H99 Nonlinear operators and their properties
65J15 Numerical solutions to equations with nonlinear operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chandru, M.; Das, P.; Ramos, H., Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data, Math. Methods Appl. Sci., 41, 14, 5359-5387 (2018) · Zbl 1403.35024
[2] Cordero, A.; Hernández, M. A.; Romero, N.; Torregrosa, J. R., Semilocal convergence by using recurrence relations for a fifth-order method in banach spaces, J. Comput. Appl. Math., 273, 205-213 (2015) · Zbl 1295.65066
[3] Das, P., Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems, J. Comput. Appl. Math., 290, 16-25 (2015) · Zbl 1321.65126
[4] Das, P., An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh, Numer. Algorithms, 81, 465-487 (2019) · Zbl 1454.65050
[5] Das, P., A higher order difference method for singularly perturbed parabolic partial differential equations, J. Difference Eq. Appl., 24, 3, 452-477 (2018) · Zbl 1427.65156
[6] Das, P.; Rana, S.; Ramos, H., A perturbation-based approach for solving fractional-order volterra-fredholm integro-differential equations and its convergence analysis, Intern. J. Comput. Math. (2019)
[7] Das, P.; Rana, S.; Ramos, H., Homotopy perturbation method for solving caputo-type fractional-order volterra-fredholm integro-differential equations, Computational and Mathematical Methods (2019)
[8] Das, P.; Rana, S.; Vigo-Aguiar, J., Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature, Appl. Numer. Math., 148, 79-97 (2020) · Zbl 1448.65075
[9] Das, P.; Vigo-Aguiar, J., Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation. parameter, J. Comput. Appl. Math., 354, 533-544 (2019) · Zbl 1415.65166
[10] Shakti, D.; Mohapatra, J.; Das, P.; Vigo-Aguiar, J., A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction?diffusion problems with arbitrary small diffusion terms, J. Comput. Appl. Math. (2020)
[11] Davis, H. T., Introduction to nonlinear differential and integral equations (1962), Dover Pub.: Dover Pub. New York · Zbl 0106.28904
[12] Ezquerro, J. A.; Hernández-Verón, M. A., Nonlinear fredholm integral equations and majorant functions, Numeri. Algor., 82, 1303-1323 (2019) · Zbl 1432.45004
[13] Ganesh, M.; Joshi, M. C., Numerical solvability of hammerstein integral equations of mixed type, IMA J. Numer. Anal., 11, 1, 21-31 (1991) · Zbl 0719.65093
[14] Hernández-Verón, M. A.; Martínez, E.; Sing, S., A reliable treatment to solve nonlinear fredholm integral equations with non-separable kernel, J. Comput. Appl. Math., 113115 (2020)
[15] Hernández, M. A.; Salanova, M. A., A newton-like iterative process for the numerical solution of fredholm nonlinear integral equations, J. Integral Equations Appl., 17, 1-17 (2005) · Zbl 1079.65135
[16] Mandal, B. N.; Bhattacharya, S., Numerical solution of some classes of integral equations using bernstein polynomials, Appl. Math. Comput., 190, 1707-1716 (2007) · Zbl 1122.65416
[17] Matrowski, J., Functional equations and nemystkii operators, Funkcial. Ekvac., 25, 127-132 (1982) · Zbl 0504.39008
[18] Müller, F.; Vamhom, W., On approximation and numerical solution of fredholm integral equations of second kind using quasi-interpolation, Appl. Math. Comput., 217, 6409-6416 (2011) · Zbl 1215.65202
[19] Singh, S.; Gupta, D. K.; Martinez, E.; Hueso, J. L., Semilocal and local convergence of a fifth order iteration with frechet derivative satisfying holder condition, Appl. Math. Comput., 276, 266-277 (2016) · Zbl 1410.65225
[20] Traub, J. F., Iterative methods for the solution of equations (1964), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0121.11204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.