## Problem of determining the reaction coefficient in a fractional diffusion equation.(English. Russian original)Zbl 1477.35311

Differ. Equ. 57, No. 9, 1195-1204 (2021); translation from Differ. Uravn. 57, No. 9, 1220-1229 (2021).
Summary: For a fractional diffusion equation with reaction coefficient depending only on the first two components of the spatial variable $$x=(x_1,x_2,x_3)\in \mathbb{R}^3$$ and on time $$t\geq 0$$, we consider the inverse problem of determining this coefficient under the assumption that the initial value at $$t=0$$ is known for the solution of the equation and the boundary value at $$x_3=0$$ is given as an additional condition. This inverse problem is reduced to equivalent integral equations, and we apply the contraction mapping principle to prove the existence of solutions of these equations. Local existence and global uniqueness theorems are proved. We also obtain a stability estimate for the solution of the inverse problem.

### MSC:

 35R30 Inverse problems for PDEs 35K20 Initial-boundary value problems for second-order parabolic equations 35R11 Fractional partial differential equations
Full Text:

### References:

 [1] Caputo, M.; Mainardi, F., Linear models of dissipation in an elastic solid, La Rivista del Nuovo Cimento, 1, 2, 161-198 (1971) [2] Babenko, Yu. I., Teplomassoobmen. Metod rascheta teplovykh i diffuzionnykh potokov (Heat and Mass Transfer. Method for Calculating Heat and Diffusion Fluxes) (1986), Leningrad: Khimiya, Leningrad [3] Gorenflo, R. and Mainardi, F., Fractional calculus: integral and differential equations of fractional order, in Fractals Fractional Calculus in Continuum Mechanics, Carpinteri, A. and Mainar, F., Eds., New York: Springer, 1997, pp. 223-276. · Zbl 1438.26010 [4] Gorenflo, R. and Rutman, R., On ultraslow and intermediate processes, in Transform Methods and Special Functions, Rusev, P., Dimovski, I., and Kiryakova, V., Eds., Sofia, 1994. Sci. Culture Technol. Singapore, 1995, pp. 61-81. [5] Mainardi, F., Fractional relaxation and fractional diffusion equations, mathematical aspects, in Proc. 12th IMACS World Congr., Ames, W.F., Ed., Georgia Tech Atlanta, 1994, vol. 1, pp. 329-332. [6] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, Carpinteri, A. and Mainar, F., Eds., New York: Springer, 1997, pp. 291-348. · Zbl 0917.73004 [7] Kochubei, A. N., The Cauchy problem for fractional-order evolution equations, Differ. Uravn., 25, 8, 1359-1368 (1986) [8] Kochubei, A. N., Diffusion of fractional order, Differ. Uravn., 26, 4, 485-492 (1990) · Zbl 0729.35064 [9] Eidelman, S. D.; Kochubei, A. N., Cauchy problem for fractional diffusion equations, J. Differ. Equat., 199, 211-255 (2004) · Zbl 1068.35037 [10] Miller, L.; Yamamoto, M., Coefficient inverse problem for a fractional diffusion equation, Inverse Probl., 29, 7, 075013 (2013) · Zbl 1278.35268 [11] Bondarenko, A. N.; Ivaschenko, D. S., Numerical methods for solving inverse problems for time fractional diffusion equation with variable coefficient, J. Inverse Ill-Posed Probl., 17, 419-440 (2009) · Zbl 1205.26009 [12] Xiong, T. X.; Zhou, Q.; Hon, C. Y., An inverse problem for fractional diffusion equation in 2-dimensional case: stability analysis and regularization, J. Math. Anal. Appl., 393, 185-199 (2012) · Zbl 1245.35144 [13] Xiong, X.; Guo, H.; Liu, X., An inverse problem for a fractional diffusion equation, J. Comput. Appl. Math., 236, 4474-4484 (2012) · Zbl 1247.65127 [14] Kirane, M.; Malik, S. A.; Al-Gwaiz, M. A., An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Meth. Appl. Sci., 36, 1056-1069 (2013) · Zbl 1267.80013 [15] Romanov, V. G., An inverse problem for a layered film on a substrate, Eurasian J. Math. Comput. Appl., 4, 3, 29-38 (2016) [16] Karuppiah, K.; Kim, J. K.; Balachandran, K., Parameter identification of an integro-differential equation, Nonlin. Func. Anal. Appl., 20, 2, 169-185 (2015) · Zbl 1321.35259 [17] Ivanchov, M.; Vlasov, V., Inverse problem for a two dimensional strongly degenerate heat equation, Electronic J. Differ. Equat., 77, 1-17 (2018) · Zbl 1390.35419 [18] Huntul, M. J.; Lesnic, D.; Hussein, M. S., Reconstruction of time-dependent coefficients from heat moments, Appl. Math. Comput., 301, 233-253 (2017) · Zbl 1411.80003 [19] Hazanee, A.; Lesnic, D.; Ismailov, M. I.; Kerimov, N. B., Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions, Appl. Math. Comput., 346, 800-815 (2019) · Zbl 1428.80011 [20] Durdiev, D. K.; Rashidov, A. Sh., Inverse problem of determining the kernel in an integro-differential equation of parabolic type, Differ. Equations, 50, 1, 110-116 (2014) · Zbl 1300.45006 [21] Durdiev, D. K.; Zhumaev, Zh. Zh., Problem of determining a multidimensional thermal memory in a heat conductivity equation, Methods Func. Anal. Topol., 25, 3, 219-226 (2019) · Zbl 1449.35426 [22] Durdiev, D. K.; Zhumaev, Zh. Zh., Problem of determining the thermal memory of a conducting medium, Differ. Equations, 56, 6, 785-796 (2020) · Zbl 1464.45018 [23] Durdiev, D. K.; Nuriddinov, J. Z., On investigation of the inverse problem for a parabolic integrodifferential equation with a variable coefficient of thermal conductivity, Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki, 30, 4, 572-584 (2020) [24] Durdiev, D.K., Shishkina, E.L., and Sitnik, S.M., The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space, September 20, 2020. · Zbl 1468.35231 [25] Ladyzhenskaya, O. A.; Solonnikov, V. A.; Ural’tseva, N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa (Linear and Quasilinear Equations of Parabolic Type) (1967), Moscow: Nauka, Moscow [26] Mathai, A. M.; Saxena, R. K.; Haubold, H. J., The $$H$$-function. Theory and Application (2010), Berlin-Heidelberg: Springer, Berlin-Heidelberg · Zbl 1181.33001 [27] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Application of Fractional Differential Equations. North-Holland Mathematical Studies (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003 [28] Tikhonov, A. N.; Samarskii, A. A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics) (1977), Moscow: Nauka, Moscow
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.