Stable knots and links in electromagnetic fields. (English) Zbl 07424943

Summary: Persistent topological structures in physical systems have become increasingly important over the last years. Electromagnetic fields with knotted field lines play a special role among these, since they can be used to transfer their knottedness to other systems like plasmas and quantum fluids. In null electromagnetic fields the electric and the magnetic field lines evolve like unbreakable elastic filaments in a fluid flow. In particular, their topology is preserved for all time, so that all knotted closed field lines maintain their knot type. We use an approach due to Bateman to prove that for every link \(L\) there is such an electromagnetic field that satisfies Maxwell’s equations in free space and that has closed electric and magnetic field lines in the shape of \(L\) for all time. The knotted and linked field lines turn out to be projections of real analytic Legendrian links with respect to the standard contact structure on the 3-sphere.


35Qxx Partial differential equations of mathematical physics and other areas of application
78Axx General topics in optics and electromagnetic theory
57K10 Knot theory
57R17 Symplectic and contact topology in high or arbitrary dimension
Full Text: DOI arXiv


[1] Adams, CC, The Knot Book (1994), New York: W.H. Freeman and Company, New York · Zbl 0840.57001
[2] Atiyah, M., The Geometry and Physics of Knots (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0729.57002
[3] Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-Motion (1915), New York: Dover, New York · JFM 45.1324.05
[4] Berry, MV, Knotted zeros in the quantum states of hydrogen, Found. Phys., 31, 659-667 (2001)
[5] Bialynicki-Birula, I., New solutions of the Dirac, Maxwell, and Weyl equations from the fractional Fourier transform, Phys. Rev. D, 103, 085001 (2021)
[6] Bialynicki-Birula, I.; Bialynicka-Birula, Z., Motion of vortex lines in nonlinear wave mechanics, Phys. Rev. A, 65, 014101 (2001)
[7] Bialynicki-Birula, I.; Bialynicka-Birula, Z., The role of the Riemann-Silberstein vector in classical and quantum theories of electromagnetism, J. Phys. A, 46, 053001 (2013) · Zbl 1267.81291
[8] Bialynicki-Birula, I.; Bialynicka-Birula, Z.; Śliwa, C., Motion of vortex lines in quantum mechanics, Phys. Rev. A, 61, 032110 (2000)
[9] Bialynicki-Birula, I.; Młoduchowski, T.; Radożycki, T.; Śliwa, C., Vortex lines in motion, Acta Physica Polonica A, 100, Supplement, 29-41 (2001)
[10] Bode, B.; Dennis, MR, Constructing a polynomial whose nodal set is any prescribed knot or link, J. Knot Theory Ramif., 28, 1, 1850082 (2019) · Zbl 1411.57010
[11] Bode, B.: Quasipositive links and electromagnetism. In: Topology and its Applications (in press) · Zbl 07401481
[12] Brauner, K., Zur Geometrie der Funktionen zweier komplexer Veränderlichen II, III, IV, Abh. Math. Sem. Univ. Hambg., 6, 8-54 (1928) · JFM 54.0373.01
[13] Burns, D. Jr; Stout, EL, Extending functions from submanifolds of the boundary, Duke Math. J., 43, 2, 391-404 (1976) · Zbl 0328.32013
[14] Dennis, MR; King, RP; Jack, B.; OHolleran, K.; Padgett, M., Isolated optical vortex knots, Nat. Phys., 6, 118-121 (2010)
[15] Enciso, A.; Hartley, D.; Peralta-Salas, D., A problem of Berry and knotted zeros in the eigenfunctions of the harmonic oscillator, J. Eur. Math. Soc., 20, 301-314 (2018) · Zbl 1421.35011
[16] Enciso, A.; Hartley, D.; Peralta-Salas, D., Dislocations of arbitrary topology in Coulomb eigenfunctions, Rev. Mat. Iberoam., 34, 1361-1371 (2018) · Zbl 1400.35011
[17] Enciso, A.; Peralta Salas, D., Knots and links in steady solutions of the Euler equations, Ann. Math., 175, 345-367 (2012) · Zbl 1238.35092
[18] Enciso, A.; Peralta Salas, D., Existence of knotted vortex tubes in steady Euler flows, Acta Math., 214, 61-134 (2015) · Zbl 1317.35184
[19] Enciso, A.; Lucà, R.; Peralta-Salas, D., Vortex reconnections in the three dimensional Navier-Stokes equations, Adv. Math., 309, 452-486 (2017) · Zbl 1381.35117
[20] Enciso, A., Peralta-Salas, D.: Approximation theorems for the Schrödinger equation and quantum vortex reconnection. arXiv:1905.02467 (2019) · Zbl 1479.35784
[21] Etnyre, JB; Menasco, W.; Thistlewaite, M., Legendrian and transversal knots, Handbook of Knot Theory, 105-185 (2005), Amsterdam: Elsevier Science, Amsterdam · Zbl 1095.57006
[22] Geiges, H.: An introduction to contact topology. In: Cambridge Studies in Advanced Mathematics, vol. 109, Cambridge University Press, Cambridge (2008) · Zbl 1153.53002
[23] Irvine, WTM, Linked and knotted beams of light, conservation of helicity and the flow of null electromagnetic fields, J. Phys. A, 43, 385203 (2010) · Zbl 1200.78001
[24] Kamien, RD; Mosna, RA, The topology of dislocations in smectic liquid crystals, New J. Phys., 18, 053012 (2016)
[25] Kauffman, LH, Knots and Physics (1991), Singapore: World Scientific, Singapore
[26] Kedia, H.; Bialynicki-Birula, I.; Peralta-Salas, D.; Irvine, WTM, Tying knots in light fields, Phys. Rev. Lett., 111, 150404 (2013)
[27] Kedia, H.; Foster, D.; Dennis, MR; Irvine, WTM, Weaving knotted vector field with tunable helicity, Phys. Rev. Lett., 117, 274501 (2016)
[28] Kedia, H.; Peralta-Salas, D.; Irvine, WTM, When do knots in light stay knotted?, J. Phys. A, 51, 025204 (2017) · Zbl 1383.78018
[29] Machon, T.; Alexander, GP, Knotted defects in nematic liquid crystals, Phys. Rev. Lett., 113, 027801 (2014)
[30] Machon, T.; Alexander, GP, Global defect topology in nematic liquid crystals, Proc. R. Soc. A, 472, 20160265 (2016)
[31] Milnor, J., Singular Points of Complex Hypersurfaces (1968), Princeton: Princeton University Press, Princeton · Zbl 0184.48405
[32] Proment, D.; Onorato, M.; Barenghi, CF, Vortex knots in a Bose-Einstein condensate, Phys. Rev. E, 85, 3, 036306 (2012)
[33] Rañada, AF, A topological theory of the electromagnetic field, Lett. Math. Phys., 18, 97-106 (1989) · Zbl 0687.57015
[34] Rolfsen, R., Knots and Links (1976), Berkeley: Publish or Perish, Berkeley · Zbl 0339.55004
[35] Rudolph, L.; Apanasov, BN; Neumann, WD; Reid, AW; Siebenmann, L., Totally tangential links of intersection of complex plane curves with round spheres, Topology, 343-349 (1992), Berlin: De Gruyter, Berlin
[36] Rudolph, L., An obstruction to sliceness via contact geometry and classical gauge theory, Invent. Math., 119, 155-163 (1995) · Zbl 0843.57011
[37] Silberstein, L., Elektromagnetische Grundgleichungen in bivectorieller Behandlung, Ann. Phys., 327, 579-586 (1907) · JFM 38.0871.02
[38] Silberstein, L., Nachtrag zur Abhandlung über Elektromagnetische Grundgleichungen in bivectorieller Behandlung, Ann. Phys., 329, 783-784 (1907)
[39] Sutcliffe, P., Knots in the Skyrme-Faddeev model, Proc. R. Soc. A, 463, 3001-3020 (2007) · Zbl 1133.81053
[40] Synge, JL, Relativity: The Special Theory (1956), Amsterdam: North-Holland Pub. Co., Amsterdam · Zbl 0071.21804
[41] Weber, H., Die Partiellen Differential-Gleichungen Der Mathematischen Physik: Nach Riemanns Vorlesungen Bearbeitet von Heinrich Weber (1901), Braunschweig: Friedrich Vieweg und Sohn, Braunschweig
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.