×

An abstract inf-sup problem inspired by limit analysis in perfect plasticity and related applications. (English) Zbl 07423871

MSC:

90C46 Optimality conditions and duality in mathematical programming
90C25 Convex programming
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74P99 Optimization problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Babuška, I., Error-bounds for finite element method, Numer. Math.16 (1971) 322-333. · Zbl 0214.42001
[2] Baniotopoulos, C. C., Haslinger, J. and Morávková, Z., Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities, Appl. Math.50 (2005) 1-25. · Zbl 1099.74021
[3] Boffi, D., Brezzi, F. and Fortin, M., Mixed Finite Element Methods and Applications (Springer, 2013). · Zbl 1277.65092
[4] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Publ. Math. Inform. RennesS4 (1974) 1-26. · Zbl 0338.90047
[5] Boyd, S. and Vandenberghe, L., Convex Programming (Cambridge Univ. Press, 2004). · Zbl 1058.90049
[6] Carstensen, C., Ebobisse, F., McBride, A. T., Reddy, B. D. and Steinmann, P., Some properties of the dissipative model of strain-gradient plasticity, Philos. Mag.97 (2017) 693-717.
[7] Cermak, M., Haslinger, J., Kozubek, T. and Sysala, S., Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. PART III-numerical realization, limit analysis, ZAMM-J. Appl. Math. Mech./Zeit. Angew. Math. Mech.95 (2015) 1348-1371. · Zbl 1335.74047
[8] Chen, W. and Liu, X. L., Limit Analysis in Soil Mechanics (Elsevier, 1990).
[9] Christiansen, E., Limit analysis in plasticity as a mathematical programming problem, Calcolo17 (1980) 41-65. · Zbl 0445.73021
[10] Christiansen, E., Limit analysis of collapse states, in Handbook of Numerical Analysis, eds. Ciarlet, P. G. and Lions, J. L., Vol IV, Part 2 (North-Holland, 1996), pp. 195-312.
[11] Dantzig, G. B., Linear Programming and Extensions, Vol. 48 (Princeton Univ. press, 1998). · Zbl 0997.90504
[12] Ekeland, I. and Temam, R., Analyse Convexe et Problèmes Variationnels (Dunod, Gauthier Villars, 1974). · Zbl 0281.49001
[13] Fleck, N. A. and Willis, J. R., A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier, J. Mech. Phys. Solids57 (2009) 1045-1057. · Zbl 1173.74316
[14] Haslinger, J., Repin, S. and Sysala, S., A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting, J. Comput. Appl. Math.303 (2016) 156-170. · Zbl 1381.74030
[15] Haslinger, J., Repin, S. and Sysala, S., Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals, Appl. Math.61 (2016) 527-564. · Zbl 1413.49038
[16] Haslinger, J., Repin, S. and Sysala, S., Inf-sup conditions on convex cones and applications to limit load analysis, Math. Mech. Solids24 (2019) 3331-3353. · Zbl 07273369
[17] Johnson, C., Existence theorems for plasticity problem, J. Math. Pures et Appl.55 (1976) 79-84. · Zbl 0355.73035
[18] Kanno, Y., Nonsmooth Mechanics and Convex Optimization (CRC Press, 2011). · Zbl 1226.90005
[19] Myerson, R. B., Game Theory (Harvard Univ. Press, 2013). · Zbl 0982.01013
[20] Nečas, J. and Hlaváček, I., Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction (Elsevier, 2017). · Zbl 0448.73009
[21] Nocedal, J. and Wright, S., Numerical Optimization (Springer Science & Business Media, 2006). · Zbl 1104.65059
[22] Parikh, N. and Boyd, S., Proximal Algorithms, Foundations and Trends in Optimization1 (2014) 127-239.
[23] Polizzotto, C., Strain gradient plasticity, strengthening effects and plastic limit analysis, Int. J. Solids Struct.47 (2010) 100-112. · Zbl 1193.74017
[24] Reddy, B. D., The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: Single-crystal plasticity, Cont. Mech. Thermodyn.23 (2011) 551-572. · Zbl 1272.74092
[25] Reddy, B. D., Ebobisse, F. and McBride, A. T., Well-posedness of a model of strain gradient plasticity for plastically irrotational materials, Int. J. Plast.24 (2008) 55-73. · Zbl 1139.74009
[26] Reddy, B. D. and Sysala, S., Bounds on the elastic threshold for problems of dissipative strain-gradient plasticity, J. Mech. Phys. Solids143 (2020) 104089.
[27] Repin, S., Estimates of deviations from exact solutions of variational problems with linear growth functional, J. Math. Sci.166 (2010) 75-85. · Zbl 1288.35218
[28] Repin, S., Sysala, S. and Haslinger, J., Computable majorants of the limit load in Hencky’s plasticity problems, Comput. Math. Appl.75 (2018) 199-217. · Zbl 1458.74022
[29] Repin, S. and Seregin, G., Existence of a weak solution of the minimax problem arising in Coulomb-Mohr plasticity, in Nonlinear Evolution Equations, ed. Uraltseva, N. N. (Amer. Math. Soc., 1995), pp. 189-220. · Zbl 0890.73079
[30] Sloan, S. W., Geotechnical stability analysis, Géotechnique63 (2013) 531-572.
[31] Sysala, S., Haslinger, J., Hlaváček, I. and Cermak, M., Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. PART I-discretization, limit analysis, ZAMM- J. Appl. Math. Mech./Zeit. Angew. Math. Mech.95 (2015) 333-353. · Zbl 1322.74055
[32] Temam, R., Mathematical Problems in Plasticity (Gauthier-Villars, 1985). · Zbl 0457.73017
[33] Zouain, N., Shakedown and safety assessment, in Encyclopedia of Computational Mechanics, eds. Stein, E., de Borst, R. and Hughes, T. J. R., 2nd edn. (John Wiley & Sons., 2018) 1-48.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.