Quasistatic viscoplasticity without safe-load conditions. (English) Zbl 1477.35261

Summary: In the paper we present the existence theory to gradient-type quasistatic models of viscoplasticity. Our goal is to show the reader a new point of view to the existence of solutions to such models where no safe-load conditions are needed. In the classic approach authors use this kind of indirect assumption on data in order to obtain proper energy estimates, in our approach we propose how to omit such safe-load conditions by quite delicate estimates and due to considering a proper approximation of the initial problem.


35Q74 PDEs in connection with mechanics of deformable solids
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74H20 Existence of solutions of dynamical problems in solid mechanics
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI


[1] Amassad, A.; Shillor, Meir; Sofonea, Mircea, A nonllinear evolution inclusion in perfect plasticity with friction, Acta Math. Univ. Comen., LXX, 215-228 (01 2001)
[2] Alber, H.-D., Materials with Memory, Lecture Notes in Mathematics, vol. 1682 (1998), Springer-Verlag: Springer-Verlag Berlin
[3] Alber, H.-D.; Chełmiński, K., Quasistatic Problems in Viscoplasticity Theory i: Models with Linear Hardening, 105-129 (2004), Birkhäuser Basel: Birkhäuser Basel Basel · Zbl 1280.74017
[4] Anzellotti, G.; Luckhaus, S., Dynamical evolution of elasto-perfectly plastic bodies, Appl. Math. Optim., 15, 1, 121-140 (1987) · Zbl 0616.73047
[5] Aubin, J.-P.; Cellina, A., Differential Inclusions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264 (1984), Springer-Verlag: Springer-Verlag Berlin
[6] Babadjian, J.-F.; Mora, M. G., Approximation of dynamic and quasi-static evolutions in elasto-plasticity by cap models, Q. Appl. Math., 73, 265-316 (2015) · Zbl 1328.74019
[7] Bensoussan, A.; Frehse, J., Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and \(H^1\) regularity, Comment. Math. Univ. Carol., 37, 2, 285-304 (1996) · Zbl 0851.35079
[8] Chełmiński, K., Coercive approximation of viscoplasticity and plasticity, Asymptot. Anal., 26, 2, 105-133 (2001) · Zbl 1013.74010
[9] Chełmiński, K., Global existence of weak-type solutions for models of monotone type in the theory of inelastic deformations, Math. Methods Appl. Sci., 25, 14, 1195-1230 (2002) · Zbl 1099.74029
[10] Chełmiński, K.; Gwiazda, P., Convergence of coercive approximations for strictly monotone quasistatic models in inelastic deformation theory, Math. Methods Appl. Sci., 30, 12, 1357-1374 (2007) · Zbl 1121.35135
[11] Denkowski, Z.; Migórski, S.; Papageorgiou, N. S., An Introduction to Nonlinear Analysis: Theory (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Boston, MA · Zbl 1040.46001
[12] Duvaut, G.; Lions, J. L., Inequalities in Mechanics and Physics (1976), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0331.35002
[13] Halphen, B.; Nguyen, Q. S., Sur les matériaux standard généralisés, J. Méc., 14, 39-63 (1975) · Zbl 0308.73017
[14] Ionescu, I. R.; Sofonea, M., Functional and Numerical Methods in Viscoplasticity, Oxford Mathematical Monographs (1993), Oxford University Press · Zbl 0787.73005
[15] Johnson, C., Existence theorems for plasticity problems, J. Math. Pures Appl., 55, 431-444 (1976) · Zbl 0351.73049
[16] Kamiński, P., Nonlinear quasistatic problems of gradient type in inelastic deformations theory, J. Math. Anal. Appl., 357, 1, 284-299 (2009) · Zbl 1178.35360
[17] Kisiel, K.; Chełmiński, K., Prandtl-Reuss dynamical elasto-perfect plasticity without safe-load conditions, Nonlinear Anal., 192, Article 111678 pp. (2020) · Zbl 1437.35656
[18] Dal Maso, G.; DeSimone, A.; Mora, M. G., Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180, 2, 237-291 (May 2006)
[19] Moreau, J. J., Application of Convex Analysis to the Treatment of Elastoplastic Systems, 56-89 (1976), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg · Zbl 0337.73004
[20] Owczarek, S., Convergence of coercive approximations for a model of gradient type in poroplasticity, Math. Methods Appl. Sci., 32, 12, 1541-1563 (2009) · Zbl 1172.35076
[21] Owczarek, S., Existence of a solution to a non-monotone dynamic model in poroplasticity with mixed boundary conditions, Topol. Methods Nonlinear Anal., 43, 2, 297-322 (2014) · Zbl 1360.74032
[22] Reuss, A., Berücksichtigung der elastischen formänderung in der plastizitätstheorie, J. Appl. Math. Mech., 10, 3, 266-274 (1930) · JFM 56.1245.04
[23] Roubicek, T.; Valdman, J., Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation, SIAM J. Appl. Math., 76, 314-340 (01 2016)
[24] Suquet, P.-M., Evolution problems for a class of dissipative materials, Q. Appl. Math., 38, 4, 391-414 (1981) · Zbl 0501.73030
[25] Temam, R., Mathematical Problems in Plasticity (1985), Gauthier-Villars · Zbl 0457.73017
[26] Temam, R., A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity, Arch. Ration. Mech. Anal., 95, 2, 137-183 (1986) · Zbl 0615.73035
[27] Temam, R.; Lions, J. L.; Papanicolaou, G.; Rockafellar, R. T., Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and Its Applications (2016), Elsevier Science
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.